skip to main content


Title: Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid–urea carbon dots
Carbon dots (CDs) are emerging as the material of choice in a range of applications due to their excellent photoluminescence properties, ease of preparation from inexpensive precursors, and low toxicity. However, the precise nature of the mechanism for the fluorescence is still under debate, and several molecular fluorophores have been reported. In this work, a new blue fluorophore, 5-oxopyrrolidine-3-carboxylic acid, was discovered in carbon dots synthesized from the most commonly used precursors: citric acid and urea. The molecular product alone has demonstrated interesting aggregation-enhanced emission (AEE), making it unique compared to other fluorophores known to be generated in CDs. We propose that this molecular fluorophore is associated with a polymer backbone within the CDs, and its fluorescence behavior is largely dependent on intermolecular interactions with the polymers or other fluorophores. Thus, a new class of non-traditional fluorophores is now relevant to the consideration of the CD fluorescence mechanism, providing both an additional challenge to the community in resolving the mechanism and an opportunity for a greater range of CD design schemes and applications.  more » « less
Award ID(s):
1901635 2001611 2011401
NSF-PAR ID:
10337266
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
ISSN:
2040-3364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citric acid and urea in formamide. Automated reversed-phase column separation was used to achieve fractions with distinct colors, including blue, cyan, green, yellow, orange and red. This work explores the physicochemical properties and fluorescence origins of the red, green, and blue fractions in depth with combined experimental and computational methods. Three dominant fluorescence mechanism hypotheses were evaluated by comparing time-dependent density functional theory and molecular dynamics calculation results to measured characteristics. We find that blue fluorescence likely comes from embedded small molecules trapped in carbonaceous cages, while pyrene analogs are the most likely origin for emission at other wavelengths, especially in the red. Also important, upon interaction with live cells, different CD color fractions are trafficked to different sub-cellular locations. Super-resolution imaging shows that the blue CDs were found in a variety of organelles, such as mitochondria and lysosomes, while the red CDs were primarily localized in lysosomes. These findings significantly advance our understanding of the photoluminescence mechanism of multicolor CDs and help to guide future design and applications of these promising nanomaterials. 
    more » « less
  2. Carbon dots (C-dots) are a promising class of carbonaceous nanomaterials for bioimaging, catalysis, and optoelectronics. However, their applications are disrupted by recent reports that bright molecular fluorophores are co-produced in the synthesis of C-dots, in particular ones prepared through a bottom-up approach (carbon nanodots (CNDs)), commonly derived from citric acid precursors. The presence of highly emissive molecular fluorophore species obscures the true performance of CNDs and severely challenges the development of CNDs. Here we observe that the issue of molecular fluorophore impurity is still problematic for CNDs which are derived from a different type of precursor, polycylic aromatic hydrocarbons (PAHs). In this study, low-oxygen-content CNDs and small molecular fluorophores are co-produced through hydrothermal condensation of nitropyrene. Extensive and systematic characterization following column chromatographic separation and solvent-induced extraction reveals that molecular fluorophores and CNDs are clearly dissimilar in structure and optical properties. This work highlights that rigorous separation and purification steps need to be taken not only for hydrophilic CNDs but also for low-oxygen-content CNDs. 
    more » « less
  3. The pH of aerosol particles remains challenging to measure because of their small size, complex composition, and high acidity. Acidity in aqueous aerosol particles, which are found abundantly in the atmosphere, impacts many chemical processes from reaction rates to cloud formation. Only one technique – pH paper – currently exists for directly determining the pH of aerosol particles, and this is restricted to measuring average acidity for entire particle populations. Other methods for evaluating aerosol pH include filter samples, particle-into-liquid sampling, Raman spectroscopy, organic dyes, and thermodynamic models, but these either operate in a higher pH range or are unable to assess certain chemical species or complexity. Here, we present a new method for determining acidity of individual particles and particle phases using carbon quantum dots as a novel in situ fluorophore. Carbon quantum dots are easily synthesized, shelf stable, and sensitive to pH in the highly acidic regime from pH 0 to pH 3 relevant to ambient aerosol particles. To establish the method, a calibration curve was formed from the ratiometric fluorescence intensity of aerosolized standard solutions with a correlation coefficient ( R 2 ) of 0.99. Additionally, the pH of aerosol particles containing a complex organic mixture (COM) representative of environmental aerosols was also determined, proving the efficacy of using carbon quantum dots as pH-sensitive fluorophores for complex systems. The ability to directly measure aerosol particle and phase acidity in the correct pH range can help parametrize atmospheric models and improve projections for other aerosol properties and their influence on health and climate. 
    more » « less
  4. Abstract

    Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose‐coated quantum dots (sucQD) and biocompatible carbon dots with β‐cyclodextrin molecular baskets (suc‐β‐CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc‐β‐CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP‐MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem‐loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants.

     
    more » « less
  5. Abstract

    Carbon dots (CDs) being a new type of carbon‐based nanomaterial have attracted intensive interest from researchers owing to their excellent biophysical properties. CDs are a class of fluorescent carbon nanomaterials that have emerged as a promising alternative to traditional quantum dots and organic dyes in applications including bioimaging, sensing, and optoelectronics. CDs possess unique optical properties, such as tunable emission, facile synthesis, and low toxicity, making them attractive for many applications in biology, medicine, and environmental areas. The synthesis of CDs is achievable by a variety of methods, including bottom‐up and top‐down approaches, involving the use of different carbon sources and surface functionalization strategies. However, understanding the fluorescence mechanism of CDs remains a challenge. Various mechanistic models have been proposed to explain their origin of luminescence. This review summarizes the recent developments in the synthesis and functionalization of CDs and provides an overview of the current understanding of the fluorescence mechanism.

     
    more » « less