skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UAS remote sensing applications to abrupt cold region hazards
Unoccupied aerial systems (UAS) are an established technique for collecting data on cold region phenomenon at high spatial and temporal resolutions. While many studies have focused on remote sensing applications for monitoring long term changes in cold regions, the role of UAS for detection, monitoring, and response to rapid changes and direct exposures resulting from abrupt hazards in cold regions is in its early days. This review discusses recent applications of UAS remote sensing platforms and sensors, with a focus on observation techniques rather than post-processing approaches, for abrupt, cold region hazards including permafrost collapse and event-based thaw, flooding, snow avalanches, winter storms, erosion, and ice jams. The pilot efforts highlighted in this review demonstrate the potential capacity for UAS remote sensing to complement existing data acquisition techniques for cold region hazards. In many cases, UASs were used alongside other remote sensing techniques (e.g., satellite, airborne, terrestrial) andin situsampling to supplement existing data or to collect additional types of data not included in existing datasets (e.g., thermal, meteorological). While the majority of UAS applications involved creation of digital elevation models or digital surface models using Structure-from-Motion (SfM) photogrammetry, this review describes other applications of UAS observations that help to assess risks, identify impacts, and enhance decision making. As the frequency and intensity of abrupt cold region hazards changes, it will become increasingly important to document and understand these changes to support scientific advances and hazard management. The decreasing cost and increasing accessibility of UAS technologies will create more opportunities to leverage these techniques to address current research gaps. Overcoming challenges related to implementation of new technologies, modifying operational restrictions, bridging gaps between data types and resolutions, and creating data tailored to risk communication and damage assessments will increase the potential for UAS applications to improve the understanding of risks and to reduce those risks associated with abrupt cold region hazards. In the future, cold region applications can benefit from the advances made by these early adopters who have identified exciting new avenues for advancing hazard research via innovative use of both emerging and existing sensors.  more » « less
Award ID(s):
2125868
PAR ID:
10532715
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers in Remote Sensing
Date Published:
Journal Name:
Frontiers in Remote Sensing
Volume:
4
ISSN:
2673-6187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrating Artificial Intelligence (AI) techniques with remote sensing holds great potential for revolutionizing data analysis and applications in many domains of Earth sciences. This review paper synthesizes the existing literature on AI applications in remote sensing, consolidating and analyzing AI methodologies, outcomes, and limitations. The primary objectives are to identify research gaps, assess the effectiveness of AI approaches in practice, and highlight emerging trends and challenges. We explore diverse applications of AI in remote sensing, including image classification, land cover mapping, object detection, change detection, hyperspectral and radar data analysis, and data fusion. We present an overview of the remote sensing technologies, methods employed, and relevant use cases. We further explore challenges associated with practical AI in remote sensing, such as data quality and availability, model uncertainty and interpretability, and integration with domain expertise as well as potential solutions, advancements, and future directions. We provide a comprehensive overview for researchers, practitioners, and decision makers, informing future research and applications at the exciting intersection of AI and remote sensing. 
    more » « less
  2. Abstract ContextUnoccupied aerial systems/vehicles (UAS/UAV, a.k.a. drones) have become an increasingly popular tool for ecological research. But much of the recent research is concerned with developing mapping and detection approaches, with few studies attempting to link UAS data to ecosystem processes and function. Landscape ecologists have long used high resolution imagery and spatial analyses to address ecological questions and are therefore uniquely positioned to advance UAS research for ecological applications. ObjectivesThe review objectives are to: (1) provide background on how UAS are used in landscape ecological studies, (2) identify major advancements and research gaps, and (3) discuss ways to better facilitate the use of UAS in landscape ecology research. MethodsWe conducted a systematic review based on PRISMA guidelines using key search terms that are unique to landscape ecology research. We reviewed only papers that applied UAS data to investigate questions about ecological patterns, processes, or function. ResultsWe summarize metadata from 161 papers that fit our review criteria. We highlight and discuss major research themes and applications, sensors and data collection techniques, image processing, feature extraction and spatial analysis, image fusion and satellite scaling, and open data and software. ConclusionWe observed a diversity of UAS methods, applications, and creative spatial modeling and analysis approaches. Key aspects of UAS research in landscape ecology include modeling wildlife micro-habitats, scaling of ecosystem functions, landscape and geomorphic change detection, integrating UAS with historical aerial and satellite imagery, and novel applications of spatial statistics. 
    more » « less
  3. This Review synthesizes progress and outlines a new framework for understanding how land surface hazards interact and propagate as sediment cascades across Earth’s surface, influenced by interactions among the atmosphere, biosphere, hydrosphere, and solid Earth. Recent research highlights a gap in understanding these interactions on human timescales, given rapid climatic change and urban expansion into hazard-prone zones. We review how surface processes such as coseismic landslides and post-fire debris flows form a complex sequence of events that exacerbate hazard susceptibility. Moreover, innovations in modeling, remote sensing, and critical zone science can offer new opportunities for quantifying cascading hazards. Looking forward, societal resilience can increase by transforming our understanding of cascading hazards through advances in integrating data into comprehensive models that link across Earth systems. 
    more » « less
  4. Passive microwave remote sensing plays an essential role in providing valuable information about the Earth’s surface, particularly for agriculture, water management, forestry, and other environmental fields. One of the key requirements for precision agricultural applications is the availability of field- scale high-resolution remote sensing data products. With the recent development of reliable unmanned aircraft systems (UAS), airborne deployment of remote sensing sensors has become more widespread to provide such products. With this in mind, we developed a UAS-based dual H-pol (hori- zontal) and V-pol (vertical) polarized radiometer operating in L-band (1400-1427 MHz). The custom dual-polarized an- tenna acquires surface emission response through a software- defined radio (SDR). This SDR-based system provides full control over the data acquisition parameters such as band- width, sampling frequency, and data size. Radio frequency interference (RFI) poses a significant challenge in radiometric measurements, requiring post-processing of the full-band radiometer data to identify and eliminate RFI-contaminated measurements, thus ensuring accurate Earth emission read- ings.. In this paper, we implemented near-real-time RFI detection onboard during the flight to accelerate the post- processing. The altitude and the speed of the UAS can be varied to achieve desired ground resolution for the measure- ment. This paper presents the full custom design and develop- ment of a lightweight SDR-based UAS-borne radiometer for precision agriculture. Additionally, we introduce the concept of an agile radiometer implemented from a small UAS that can serve as a testbed for both current and future spaceborne missions. 
    more » « less
  5. The workplace influences the safety, health, and productivity of workers at multiple levels. To protect and promote total worker health, smart hardware, and software tools have emerged for the identification, elimination, substitution, and control of occupational hazards. Wearable devices enable constant monitoring of individual workers and the environment, whereas connected worker solutions provide contextual information and decision support. Here, the recent trends in commercial workplace technologies to monitor and manage occupational risks, injuries, accidents, and diseases are reviewed. Workplace safety wearables for safe lifting, ergonomics, hazard identification, sleep monitoring, fatigue management, and heat and cold stress are discussed. Examples of workplace productivity wearables for asset tracking, augmented reality, gesture and motion control, brain wave sensing, and work stress management are given. Workplace health wearables designed for work‐related musculoskeletal disorders, functional movement disorders, respiratory hazards, cardiovascular health, outdoor sun exposure, and continuous glucose monitoring are shown. Connected worker platforms are discussed with information about the architecture, system modules, intelligent operations, and industry applications. Predictive analytics provide contextual information about occupational safety risks, resource allocation, equipment failure, and predictive maintenance. Altogether, these examples highlight the ground‐level benefits of real‐time visibility about frontline workers, work environment, distributed assets, workforce efficiency, and safety compliance. 
    more » « less