skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 30, 2025

Title: On-Chip Lock-In Detection for Ultrafast Spectroscopy of Single Particles
Time-resolved spectroscopy of plasmonic nanoparticles is a vital technique for probing their ultrafast electron dynamics and subsequent acoustic and photothermal properties. Traditionally, these experiments are performed with spectrally broad probe beams on the ensemble level to achieve high signal amplitudes. However, the relaxation dynamics of plasmonic nanoparticles is highly dependent on their size, shape, and crystallinity. As such, the inherent heterogeneity of most nanoparticle samples can complicate efforts to build microscopic models for these dynamics solely on the basis of ensemble measurements. Although approaches for collecting time-resolved microscopy signals from individual nanoparticles at selected probe wavelengths have been demonstrated, acquiring time-resolved spectra from single objects remains challenging. Here, we demonstrate an alternate method that efficiently yields the time-resolved spectra of a single gold nanodisk in one measurement. By modulating the frequency-doubled output of a 96 MHz Ti:sapphire oscillator at 8 kHz, we are able to use a lock-in pixel-array camera to detect photoinduced changes in the transmission of a white light continuum probe derived from a photonic crystal fiber to produce broadband femtosecond transmission spectra of a single gold nanodisk. We also compare the performance of the lock-in camera for the same single nanoparticle to measurements with a single-element photodiode and find comparable sensitivities. The lock-in camera thus provides a major advantage due to its ability to multiplex spectral detection, which we utilize here to capture both the electronic dynamics and acoustic vibrations of a single gold nanodisk following ultrafast laser excitation.  more » « less
Award ID(s):
2413590
PAR ID:
10532798
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
128
Issue:
21
ISSN:
1932-7447
Page Range / eLocation ID:
8708 to 8715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past decade, the proliferation of pulsed laser sources with high repetition rates has facilitated a merger of ultrafast time-resolved spectroscopy with imaging microscopy. In transient absorption microscopy (TAM), the excited-state dynamics of a system are tracked by measuring changes in the transmission of a focused probe pulse following photoexcitation of a sample. Typically, these experiments are done using a photodiode detector and lock-in amplifier synchronized with the laser and images highlighting spatial heterogeneity in the TAM signal are constructed by scanning the probe across a sample. Performing TAM by instead imaging a spatially defocused widefield probe with a multipixel camera could dramatically accelerate the acquisition of spatially resolved dynamics, yet approaches for such widefield imaging generally suffer from reduced signal-to-noise due to an incompatibility of multipixel cameras with high-frequency lock-in detection. Herein, we describe implementation of a camera capable of high-frequency lock-in detection, thereby enabling widefield TAM imaging at rates matching those of high repetition rate lasers. Transient images using a widefield probe and two separate pump pulse configurations are highlighted. In the first, a widefield probe was used to image changes in the spatial distribution of photoexcited molecules prepared by a tightly focused pump pulse, while in the second, a widefield probe detected spatial variations in photoexcited dynamics within a heterogeneous organic crystal excited by a defocused pump pulse. These results highlight the ability of high-sensitivity lock-in detection to enable widefield TAM imaging, which can be leveraged to further our understanding of excited-state dynamics and excitation transport within spatially heterogeneous systems. 
    more » « less
  2. We report the modification of a gas phase ultrafast electron diffraction (UED) instrument that enables experiments with both gas and condensed matter targets, where a time-resolved experiment with sub-picosecond resolution is demonstrated with solid state samples. The instrument relies on a hybrid DC-RF acceleration structure to deliver femtosecond electron pulses on the target, which is synchronized with femtosecond laser pulses. The laser pulses and electron pulses are used to excite the sample and to probe the structural dynamics, respectively. The new system is added with capabilities to perform transmission UED on thin solid samples. It allows for cooling samples to cryogenic temperatures and to carry out time-resolved measurements. We tested the cooling capability by recording diffraction patterns of temperature dependent charge density waves in 1T-TaS2. The time-resolved capability is experimentally verified by capturing the dynamics in photoexcited single-crystal gold. 
    more » « less
  3. null (Ed.)
    To help better interpret experimental measurement of nanoparticle size, it is important to understand how their diffusion depends on the physical and chemical features of surface ligands. In this study, explicit solvent molecular dynamics simulations are used to probe the effect of ligand charge and flexibility on the diffusion of small gold nanoparticles. The results suggest that despite a high bare charge (+18 e), cationic nanoparticles studied here have reduced diffusion constants compared to a hydrophobic gold nanoparticle by merely a modest amount. Increasing the ligand length by 10 CH2 units also has a limited impact on the diffusion constant. For the three particles studied here, the difference between estimated hydrodynamic radius and radius of gyration is on the order of one solvent layer (3–5 Å), confirming that the significant discrepancies found in the size of similar nanoparticles by recent transmission electron microscopy and dynamic light scattering measurements were due to aggregation under solution conditions. The limited impact of electrostatic friction on the diffusion of highly charged nanoparticles is found to be due to the strong anticorrelation between electrostatic and van der Waals forces between nanoparticle and environment, supporting the generality of recent observation for proteins by Matyushov and co-workers. Including the first shell of solvent molecules as part of the diffusing particle has a minor impact on the total force autocorrelation function but reduces the disparity in relaxation time between the total force and its electrostatic and van der Waals components. 
    more » « less
  4. Abstract Plasmonic vesicle consists of multiple gold nanocrystals within a polymer coating or around a phospholipid core. As a multifunctional nanostructure, it has unique advantages of assembling small nanoparticles (<5 nm) for rapid renal clearance, strong plasmonic coupling for ultrasensitive biosensing and imaging, and near‐infrared light absorption for drug release. Thus, understanding the interaction of plasmonic vesicles with light is critically important for a wide range of applications. In this paper, a combined experimental and computational study is presented on the nanocrystal transformation in colloidal plasmonic vesicles induced by the ultrafast picosecond pulsed laser. Experimentally observed merging and transformation of small nanocrystals into larger nanoparticles when treated by laser pulses is first reported. The underlying mechanisms responsible for the experimental observations are investigated with a multiphysics computational approach featuring coupled electromagnetic/molecular dynamics simulation. This study reveals for the first time that combined nanoparticle heating and laser‐enhanced Brownian motion is responsible for the observed nanocrystal merging. Correspondingly, laser fluence, interparticle distance, and presence of water are identified as the most important factors governing the nanocrystal transformation. The guidelines established from this study can be employed to design a host of biomedical and nanomanufacturing applications involving laser interaction with plasmonic nanoparticles. 
    more » « less
  5. Abstract The capability to study the dynamic formation of plasmonic molecular junction is of fundamental importance, and it will provide new insights into molecular electronics/plasmonics, single‐entity electrochemistry, and nanooptoelectronics. Here, a facile method to form plasmonic molecular junctions is reported by utilizing single gold nanoparticle (NP) collision events at a highly curved gold nanoelectrode modified with a self‐assembled monolayer. By using time‐resolved electrochemical current measurement and surface‐enhanced Raman scattering spectroscopy, the current changes and the evolution of interfacial chemical bonding are successfully observed in the newly formed molecular tunnel junctions during and after the gold NP “hit‐n‐stay” and “hit‐n‐run” collision events. The results lead to an in‐depth understanding of the single NP motion and the associated molecular level changes during the formation of the plasmonic molecular junctions in a single NP collision event. This method also provides a new platform to study molecular changes at the single molecule level during electron transport in a dynamic molecular tunnel junction. 
    more » « less