Magnetic fields likely play an important role in the formation of young protostars. Multiscale and multiwavelength dust polarization observations can reveal the inferred magnetic field from scales of the cloud to core to protostar. We present continuum polarization observations of the young protostellar triple system IRAS 16293-2422 at 89
This content will become publicly available on February 28, 2025
We present 870
- PAR ID:
- 10532800
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 963
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L31
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ m using HAWC+ on SOFIA. The inferred magnetic field is very uniform with an average field angle of 89° ± 23° (E of N), which is different from the ∼170° field morphology seen at 850μ m at larger scales (≳2000 au) with JCMT POL-2 and at 1.3 mm on smaller scales (≲300 au) with Atacama Large Millimeter/submillimeter Array. The HAWC+ magnetic field direction is aligned with the known E-W outflow. This alignment difference suggests that the shorter wavelength HAWC+ data is tracing the magnetic field associated with warmer dust likely from the outflow cavity, whereas the longer wavelength data are tracing the bulk magnetic field from cooler dust. Also, we show in this source the dust emission peak is strongly affected by the observing wavelength. The dust continuum peaks closer to source B (northern source) at shorter wavelengths and progressively moves toward the southern A source with increasing wavelength (from 22 to 850μ m). -
Abstract In this study, we apply the velocity gradient technique to the merging Centaurus galaxy. We compare gradient maps derived from the PHANGS-Atacama Large Millimeter/submillimeter Array survey using CO emission lines with magnetic field tracings from dust polarization data obtained via the HAWC+ instrument. Our analysis reveals a strong correspondence between the directions indicated by these two tracers across most of the galactic image. Specifically, we identify jet regions as areas of antialignment, consistent with previous reports that gradients tend to rotate 90° in outflow regions. Statistically, we find that the alignment of magnetic fields, as revealed by polarization, is most accurate in regions with the highest signal-to-noise ratios. Our findings underscore the utility of velocity gradients as a valuable complementary tool for probing magnetic fields and dynamical processes in merging galaxies. This proves the general utility of velocity gradients for mapping magnetic fields in astrophysical objects with complex dynamics.
-
Context. LDN 1157 is one of several clouds that are situated in the cloud complex LDN 1147/1158. The cloud presents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm, that resides deep inside the cloud. Aims. The main goals of this work are (a) mapping the intercloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, outflow direction, and core magnetic field (CMF) geometry inferred from the millimeter- and submillimeter polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. Methods. We carried out optical ( R -band) polarization observations of the stars projected on the cloud to map the parsec-scale magnetic field geometry. We made spectroscopic observations of the entire cloud in the 12 CO, C 18 O, and N 2 H + ( J = 1–0) lines to investigate its kinematic structure. Results. We obtained a distance of 340 ± 3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three young stellar objects (YSOs) associated with the complex. A single filament of ~1.2 pc in length (traced by the Filfinder algorithm) and ~0.09 pc in width (estimated using the Radfil algorithm) is found to run throughout the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the hourglass morphology of the magnetic field, it is likely that the magnetic field played an important role in the star formation process in LDN 1157. LDN 1157-mm is embedded in one of the two high-density peaks detected using the Clumpfind algorithm. The two detected clumps lie on the filament and show a blue-red asymmetry in the 12 CO line. The C 18 O emission is well correlated with the filament and presents a coherent structure in velocity space. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and an another complex, LDN 1172/1174, that is situated ~2° east of it, we found that the two complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation through interaction of the moving cloud with the ambient interstellar medium.more » « less
-
Abstract We present H -band (1.65 μ m) and SOFIA HAWC+ 154 μ m polarization observations of the low-mass core L483. Our H -band observations reveal a magnetic field that is overwhelmingly in the E–W direction, which is approximately parallel to the bipolar outflow that is observed in scattered IR light and in single-dish 12 CO observations. From our 154 μ m data, we infer a ∼45° twist in the magnetic field within the inner 5″ (1000 au) of L483. We compare these new observations with published single-dish 350 μ m polarimetry and find that the 10,000 au scale H -band data match the smaller-scale 350 μ m data, indicating that the collapse of L483 is magnetically regulated on these larger scales. We also present high-resolution 1.3 mm Atacama Large Millimeter/submillimeter Array data of L483 that reveals it is a close binary star with a separation of 34 au. The plane of the binary of L483 is observed to be approximately parallel to the twisted field in the inner 1000 au. Comparing this result to the ∼1000 au protostellar envelope, we find that the envelope is roughly perpendicular to the 1000 au HAWC+ field. Using the data presented, we speculate that L483 initially formed as a wide binary and the companion star migrated to its current position, causing an extreme shift in angular momentum thereby producing the twisted magnetic field morphology observed. More observations are needed to further test this scenario.more » « less
-
ABSTRACT Magnetic fields play a crucial role in star formation, yet tracing them becomes particularly challenging, especially in the presence of outflow feedback in protostellar systems. We targeted the star-forming region L1551, notable for its apparent outflows, to investigate the magnetic fields. These fields were probed using polarimetry observations from the Planck satellite at 353 GHz/849 μm, the Stratospheric Observatory for Infrared Astronomy's (SOFIA) High-resolution Airborne Wide-band Camera (HAWC+ ) measurement at 214 μm, and the James Clerk Maxwell Telescope's (JCMT) Submillimetre Common-User POLarimeter (SCUPOL) 850 μm survey. Consistently, all three measurements show that the magnetic fields twist towards the protostar IRS 5. Additionally, we utilized the velocity gradient technique on the 12CO (J = 1–0) emission data to distinguish the magnetic fields directly associated with the protostellar outflows. These were then compared with the polarization results. Notably, in the outskirts of the region, these measurements generally align. However, as one approaches the centre of IRS 5, the measurements tend to yield mostly perpendicular relative orientations. This suggests that the outflows might be dynamically significant from a scale of ∼0.2 pc, causing the velocity gradient to change direction by 90°. Furthermore, we discovered that the polarization fraction p and the total intensity I correlate as p ∝ I−α. Specifically, α is approximately 1.044 ± 0.06 for SCUPOL and around 0.858 ± 0.15 for HAWC+. This indicates that the outflows could significantly impact the alignment of dust grains and magnetic fields in the L1551 region.