Magnetic fields likely play an important role in the formation of young protostars. Multiscale and multiwavelength dust polarization observations can reveal the inferred magnetic field from scales of the cloud to core to protostar. We present continuum polarization observations of the young protostellar triple system IRAS 16293-2422 at 89
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract μ m using HAWC+ on SOFIA. The inferred magnetic field is very uniform with an average field angle of 89° ± 23° (E of N), which is different from the ∼170° field morphology seen at 850μ m at larger scales (≳2000 au) with JCMT POL-2 and at 1.3 mm on smaller scales (≲300 au) with Atacama Large Millimeter/submillimeter Array. The HAWC+ magnetic field direction is aligned with the known E-W outflow. This alignment difference suggests that the shorter wavelength HAWC+ data is tracing the magnetic field associated with warmer dust likely from the outflow cavity, whereas the longer wavelength data are tracing the bulk magnetic field from cooler dust. Also, we show in this source the dust emission peak is strongly affected by the observing wavelength. The dust continuum peaks closer to source B (northern source) at shorter wavelengths and progressively moves toward the southern A source with increasing wavelength (from 22 to 850μ m).Free, publicly-accessible full text available June 1, 2025 -
Abstract The magnetic field of a molecular cloud core may play a role in the formation of circumstellar disks in the core. We present magnetic field morphologies in protostellar cores of 16 targets in the Atacama Large Millimeter/submillimeter Array large program “Early Planet Formation in Embedded Disks (eDisk),” which resolved their disks with 7 au resolutions. The 0.1 pc scale magnetic field morphologies were inferred from the James Clerk Maxwell Telescope POL-2 observations. The mean orientations and angular dispersions of the magnetic fields in the dense cores are measured and compared with the radii of the 1.3 mm continuum disks and the dynamically determined protostellar masses from the eDisk program. We observe a significant correlation between the disk radii and the stellar masses. We do not find any statistically significant dependence of the disk radii on the projected misalignment angles between the rotational axes of the disks and the magnetic fields in the dense cores, nor on the angular dispersions of the magnetic fields within these cores. However, when considering the projection effect, we cannot rule out a positive correlation between disk radii and misalignment angles in three-dimensional space. Our results suggest that the morphologies of magnetic fields in dense cores do not play a dominant role in the disk formation process. Instead, the sizes of protostellar disks may be more strongly affected by the amount of mass that has been accreted onto star+disk systems, and possibly other parameters, for example, magnetic field strength, core rotation, and magnetic diffusivity.
Free, publicly-accessible full text available July 1, 2025 -
Abstract Millimeter and submillimeter observations of continuum linear dust polarization provide insight into dust grain growth in protoplanetary disks, which are the progenitors of planetary systems. We present the results of the first survey of dust polarization in protoplanetary disks at 870
μ m and 3 mm. We find that protoplanetary disks in the same molecular cloud at similar evolutionary stages can exhibit different correlations between observing wavelength and polarization morphology and fraction. We explore possible origins for these differences in polarization, including differences in dust populations and protostar properties. For RY Tau and MWC 480, which are consistent with scattering at both wavelengths, we present models of the scattering polarization from several dust grain size distributions. These models aim to reproduce two features of the observational results for these disks: (1) both disks have an observable degree of polarization at both wavelengths; and (2) the polarization fraction is higher at 3 mm than at 870μ m in the centers of the disks. For both disks, these features can be reproduced by a power-law distribution of spherical dust grains with a maximum radius of 200μ m and high optical depth. In MWC 480, we can also reproduce features (1) and (2) with a model containing large grains (a max= 490μ m) near the disk midplane and small grains (a max= 140μ m) above and below the midplane. -
Abstract We investigate the crescent-shaped dust trap in the transition disk Oph IRS 48 using well-resolved (sub)millimeter polarimetric observations at ALMA Band 7 (870
μ m). The dust polarization map reveals patterns consistent with dust-scattering-induced polarization. There is a relative displacement between the polarized flux and the total flux, which holds the key to understanding the dust scale heights in this system. We model the polarization observations, focusing on the effects of dust scale heights. We find that the interplay between the inclination-induced polarization and the polarization arising from radiation anisotropy in the crescent determines the observed polarization; the anisotropy is controlled by the dust optical depth along the midplane, which is, in turn, determined by the dust scale height in the vertical direction. We find that the dust grains can be neither completely settled nor well mixed with the gas. The completely settled case produces little radial displacement between the total and polarized flux, while the well-mixed case produces an azimuthal pattern in the outer (radial) edge of the crescent that is not observed. Our best model has a gas-to-dust scale height ratio of 2 and can reproduce both the radial displacement and the azimuthal displacement between the total and polarized flux. We infer an effective turbulenceα parameter of approximately 0.0001–0.005. The scattering-induced polarization provides insight into a turbulent vortex with a moderate level of dust settling in the IRS 48 system, which is hard to achieve otherwise.Free, publicly-accessible full text available March 1, 2025 -
Abstract We present 870
μ m polarimetric observations toward 61 protostars in the Orion molecular clouds with ∼400 au (1″) resolution using the Atacama Large Millimeter/submillimeter Array. We successfully detect dust polarization and outflow emission in 56 protostars; in 16 of them the polarization is likely produced by self-scattering. Self-scattering signatures are seen in several Class 0 sources, suggesting that grain growth appears to be significant in disks at earlier protostellar phases. For the rest of the protostars, the dust polarization traces the magnetic field, whose morphology can be approximately classified into three categories: standard-hourglass, rotated-hourglass (with its axis perpendicular to outflow), and spiral-like morphology. A total of 40.0% (±3.0%) of the protostars exhibit a mean magnetic field direction approximately perpendicular to the outflow on several × 102–103au scales. However, in the remaining sample, this relative orientation appears to be random, probably due to the complex set of morphologies observed. Furthermore, we classify the protostars into three types based on the C17O (3–2) velocity envelope’s gradient: perpendicular to outflow, nonperpendicular to outflow, and unresolved gradient (≲1.0 km s−1arcsec−1). In protostars with a velocity gradient perpendicular to outflow, the magnetic field lines are preferentially perpendicular to outflow, with most of them exhibiting a rotated hourglass morphology, suggesting that the magnetic field has been overwhelmed by gravity and angular momentum. Spiral-like magnetic fields are associated with envelopes having large velocity gradients, indicating that the rotation motions are strong enough to twist the field lines. All of the protostars with a standard-hourglass field morphology show no significant velocity gradient due to the strong magnetic braking.Free, publicly-accessible full text available February 28, 2025 -
ABSTRACT Polarization is a unique tool to study the dust grains of protoplanetary discs. Polarization around HL Tau was previously imaged using the Atacama Large Millimeter/submillimeter Array (ALMA) at Bands 3 (3.1 mm), 6 (1.3 mm), and 7 (0.87 mm), showing that the polarization orientation changes across wavelength λ. Polarization at Band 7 is predominantly parallel to the disc minor axis but appears azimuthally oriented at Band 3, with the morphology at Band 6 in between the two. We present new ∼0.2 arcsec (29 au) polarization observations at Q-Band (7.0 mm) using the Karl G. Jansky Very Large Array (VLA) and at Bands 4 (2.1 mm), 5 (1.5 mm), and 7 using ALMA, consolidating HL Tau’s position as the protoplanetary disc with the most complete wavelength coverage in dust polarization. The polarization patterns at Bands 4 and 5 follow the previously identified morphological transition with wavelength. From the azimuthal variation, we decompose the polarization into contributions from scattering (s) and thermal emission (t). s decreases slowly with increasing λ, and t increases more rapidly which are expected from optical depth effects of toroidally aligned scattering prolate grains. The weak λ dependence of s is inconsistent with the simplest case of Rayleigh scattering by small grains in the optically thin limit but can be affected by factors such as optical depth, disc substructure, and dust porosity. The sparse polarization detections from the Q-band image are also consistent with toroidally aligned prolate grains.
-
Abstract High-resolution, millimeter observations of disks at the protoplanetary stage reveal substructures such as gaps, rings, arcs, spirals, and cavities. While many protoplanetary disks host such substructures, only a few at the younger protostellar stage have shown similar features. We present a detailed search for early disk substructures in Atacama Large Millimeter/submillimeter Array 1.3 and 0.87 mm observations of ten protostellar disks in the Ophiuchus star-forming region. Of this sample, four disks have identified substructure, two appear to be smooth disks, and four are considered ambiguous. The structured disks have wide Gaussian-like rings (
σ R /R disk∼ 0.26) with low contrasts (C < 0.2) above a smooth disk profile, in comparison to protoplanetary disks where rings tend to be narrow and have a wide variety of contrasts (σ R /R disk∼ 0.08 andC ranges from 0 to 1). The four protostellar disks with the identified substructures are among the brightest sources in the Ophiuchus sample, in agreement with trends observed for protoplanetary disks. These observations indicate that substructures in protostellar disks may be common in brighter disks. The presence of substructures at the earliest stages suggests an early start for dust grain growth and, subsequently, planet formation. The evolution of these protostellar substructures is hypothesized in two potential pathways: (1) the rings are the sites of early planet formation, and the later observed protoplanetary disk ring–gap pairs are secondary features, or (2) the rings evolve over the disk lifetime to become those observed at the protoplanetary disk stage. -
ABSTRACT The size of dust grains, a, is key to the physical and chemical processes in circumstellar discs, but observational constraints of grain size remain challenging. (Sub)millimetre continuum observations often show a per cent-level polarization parallel to the disc minor axis, which is generally attributed to scattering by ${\sim}100\, \mu{\rm m}$-sized spherical grains (with a size parameter x ≡ 2$\pi$a/λ < 1, where λ is the wavelength). Larger spherical grains (with x greater than unity) would produce opposite polarization direction. However, the inferred size is in tension with the opacity index β that points to larger mm/cm-sized grains. We investigate the scattering-produced polarization by large irregular grains with a range of x greater than unity with optical properties obtained from laboratory experiments. Using the radiation transfer code, RADMC-3D, we find that large irregular grains still produce polarization parallel to the disc minor axis. If the original forsterite refractive index in the optical is adopted, then all samples can produce the typically observed level of polarization. Accounting for the more commonly adopted refractive index using the DSHARP dust model, only grains with x of several (corresponding to ∼mm-sized grains) can reach the same polarization level. Our results suggest that grains in discs can have sizes in the millimetre regime, which may alleviate the tension between the grain sizes inferred from scattering and other means. Additionally, if large irregular grains are not settled to the mid-plane, their strong forward scattering can produce asymmetries between the near and far side of an inclined disc, which can be used to infer their presence.
-
Abstract We present Very Large Array observations toward the Class 0 protostar L1157 MMS at 6.8 and 9 mm with a resolution of ∼0.″04 (14 au). We detect two sources within L1157 MMS and interpret these sources as a binary protostar with a separation of ∼16 au. The material directly surrounding the binary system within the inner 50 au radius of the system has an estimated mass of 0.11
M ☉, calculated from the observed dust emission. We interpret the observed binary system in the context of previous observations of its flattened envelope structure, low rates of envelope rotation from 5000 to 200 au scales, and an ordered, poloidal magnetic field aligned with the outflow. Thus, L1157 MMS is a prototype system for magnetically regulated collapse, and the presence of a compact binary within L1157 MMS demonstrates that multiple star formation can still occur within envelopes that likely have dynamically important magnetic fields. -
ABSTRACT Telescopes are now able to resolve dust polarization across circumstellar discs at multiple wavelengths, allowing the study of the polarization spectrum. Most discs show clear evidence of dust scattering through their unidirectional polarization pattern typically at the shorter wavelength of $\sim 870 \, \mu$m. However, certain discs show an elliptical pattern at ∼3 mm, which is likely due to aligned grains. With HL Tau, its polarization pattern at ∼1.3 mm shows a transition between the two patterns making it the first example to reveal such transition. We use the T-matrix method to model elongated dust grains and properly treat scattering of aligned non-spherical grains with a plane-parallel slab model. We demonstrate that a change in optical depth can naturally explain the polarization transition of HL Tau. At low optical depths, the thermal polarization dominates, while at high optical depths, dichroic extinction effectively takes out the thermal polarization and scattering polarization dominates. Motivated by results from the plane-parallel slab, we develop a simple technique to disentangle thermal polarization of the aligned grains T0 and polarization due to scattering S using the azimuthal variation of the polarization fraction. We find that, with increasing wavelength, the fractional polarization spectrum of the scattering component S decreases, while the thermal component T0 increases, which is expected since the optical depth decreases. We find several other sources similar to HL Tau that can be explained by azimuthally aligned scattering prolate grains when including optical depth effects. In addition, we explore how spirally aligned grains with scattering can appear in polarization images.