skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relatively Anosov representations via flows II: Examples
This is the second in a series of two papers that develops a theory of relatively Anosov representations using the original “contracting flow on a bundle” definition of Anosov representations introduced by Labourie and Guichard–Wienhard. In this paper, we focus on building families of examples.  more » « less
Award ID(s):
2105580 2104381
PAR ID:
10532827
Author(s) / Creator(s):
;
Publisher / Repository:
John Wiley and Sons Ltd
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
109
Issue:
6
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We discuss how one uses the thermodynamic formalism to produce metrics on higher Teichmüller spaces. Our higher Teichmüller spaces will be spaces of Anosov representations of a word-hyperbolic group into a semi-simple Lie group. We begin by discussing our construction in the classical setting of the Teichmüller space of a closed orientable surface of genus at least 2, then we explain the construction for Hitchin components and finally we treat the general case. This paper surveys results of Bridgeman, Canary, Labourie and Sambarino, The pressure metric for Anosov representations , and discusses questions and open problems which arise. 
    more » « less
  2. Andersen, Masbaum and Ueno conjectured that certain quantum representations of surface mapping class groups should send pseudo-Anosov mapping classes to elements of infinite order (for large enough level r). In this paper, we relate the AMU conjecture to a question about the growth of the Turaev-Viro invariants TVr of hyperbolic 3-manifolds. We show that if the r-growth of |TVr(M)| for a hyperbolic 3-manifold M that fibers over the circle is exponential, then the monodromy of the fibration of M satisfies the AMU conjecture. Building on earlier work \cite{DK} we give broad constructions of (oriented) hyperbolic fibered links, of arbitrarily high genus, whose SO(3)-Turaev-Viro invariants have exponential r-growth. As a result, for any g>n⩾2, we obtain infinite families of non-conjugate pseudo-Anosov mapping classes, acting on surfaces of genus g and n boundary components, that satisfy the AMU conjecture. We also discuss integrality properties of the traces of quantum representations and we answer a question of Chen and Yang about Turaev-Viro invariants of torus links. 
    more » « less
  3. Andersen, Masbaum and Ueno conjectured that certain quantum representations of surface mapping class groups should send pseudo-Anosov mapping classes to elements of infinite order (for large enough level r). In this paper, we relate the AMU conjecture to a question about the growth of the Turaev-Viro invariants TVr of hyperbolic 3-manifolds. We show that if the r-growth of |TVr(M)| for a hyperbolic 3-manifold M that fibers over the circle is exponential, then the monodromy of the fibration of M satisfies the AMU conjecture. Building on earlier work \cite{DK} we give broad constructions of (oriented) hyperbolic fibered links, of arbitrarily high genus, whose SO(3)-Turaev-Viro invariants have exponential r-growth. As a result, for any g>n⩾2, we obtain infinite families of non-conjugate pseudo-Anosov mapping classes, acting on surfaces of genus g and n boundary components, that satisfy the AMU conjecture. We also discuss integrality properties of the traces of quantum representations and we answer a question of Chen and Yang about Turaev-Viro invariants of torus links. 
    more » « less
  4. Abstract Quasigeodesic behavior of flow lines is a very useful property in the study of Anosov flows. Not every Anosov flow in dimension three is quasigeodesic. In fact, until recently, up to orbit equivalence, the only previously known examples of quasigeodesic Anosov flows were suspension flows. In a recent article, the second author proved that an Anosov flow on a hyperbolic 3-manifold is quasigeodesic if and only if it is non-$$\mathbb {R}$$-covered, and this result completes the classification of quasigeodesic Anosov flows on hyperbolic 3-manifolds. In this article, we prove that a new class of examples of Anosov flows are quasigeodesic. These are the first examples of quasigeodesic Anosov flows on 3-manifolds that are neither Seifert, nor solvable, nor hyperbolic. In general, it is very hard to show that a given flow is quasigeodesic and, in this article, we provide a new method to prove that an Anosov flow is quasigeodesic. 
    more » « less
  5. We investigate representations of Coxeter groups into\mathrm{GL}(n,\mathbb{R})as geometric reflection groups which are convex cocompact in the projective space\mathbb{P}(\mathbb{R}^{n}). We characterize which Coxeter groups admit such representations, and we fully describe the corresponding spaces of convex cocompact representations as reflection groups, in terms of the associated Cartan matrices. The Coxeter groups that appear include all infinite word hyperbolic Coxeter groups; for such groups, the representations as reflection groups that we describe are exactly the projective Anosov ones. We also obtain a large class of nonhyperbolic Coxeter groups, thus providing many examples for the theory of nonhyperbolic convex cocompact subgroups in\mathbb{P}(\mathbb{R}^{n})developed by Danciger–Guéritaud–Kassel (2024). 
    more » « less