Abstract This study examines the climate response to a sea surface temperature (SST) warming imposed over the southwest Tropical Indian Ocean (TIO) in a coupled ocean-atmosphere model. The results indicate that the southwest TIO SST warming can remotely modulate the atmospheric circulation over the western North Pacific (WNP) via inter-basin air-sea interaction during early boreal summer. The southwest TIO SST warming induces a “C-shaped” wind response with northeasterly and northwesterly anomalies over the north and south TIO, respectively. The northeasterly wind anomalies contribute to the north TIO SST warming via a positive Wind-Evaporation-SST(WES) feedback after the Asian summer monsoon onset. In June, the easterly wind response extends into the WNP, inducing an SST cooling by WES feedback on the background trade winds. Both the north TIO SST warming and the WNP SST cooling contribute to an anomalous anticyclonic circulation (AAC) over the WNP. The north TIO SST warming, WNP SST cooling, and AAC constitute an inter-basin coupled mode called the Indo-western Pacific ocean capacitor (IPOC), and the southwest TIO SST warming could be a trigger for IPOC. While the summertime southwest TIO SST warming is often associated with antecedent El Niño, the warming in 2020 seems to be related to extreme Indian Ocean Dipole in 2019 fall. The strong southwest TIO SST warming seems to partly explain the strong summer AAC of 2020 over the WNP even without a strong antecedent El Niño.
more »
« less
Summer Westerly Wind Intensification Weakens Southern Ocean Seasonal Cycle Under Global Warming
Abstract Since the 1950s, observations and climate models show an amplification of sea surface temperature (SST) seasonal cycle in response to global warming over most of the global oceans except for the Southern Ocean (SO), however the cause remains poorly understood. In this study, we analyzed observations, ocean reanalysis, and a set of historical and abruptly quadrupled CO2simulations from the Coupled Model Intercomparison Project Phase 6 archive and found that the weakened SST seasonal cycle over the SO could be mainly attributed to the intensification of summertime westerly winds. Under the historical warming, the intensification of summertime westerly winds over the SO effectively deepens ocean mixed layer and damps surface warming, but this effect is considerably weaker in winter, thus weakening the SST seasonal cycle. This wind‐driven mechanism is further supported by our targeted coupled model experiments with the wind intensification effects being removed.
more »
« less
- Award ID(s):
- 1951713
- PAR ID:
- 10532914
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 14
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Over the past century, the subpolar North Atlantic experienced slight cooling or suppressed warming, relative to the background positive temperature trends, often dubbed the North Atlantic warming hole (NAWH). The causes of the NAWH remain under debate. Here we conduct coupled ocean-atmosphere simulations to demonstrate that enhanced Indian Ocean warming, another salient feature of global warming, could increase local rainfall and through teleconnections strengthen surface westerly winds south of Greenland, cooling the subpolar North Atlantic. In decades to follow however, this cooling effect would gradually vanish as the Indian Ocean warming acts to strengthen the Atlantic meridional overturning circulation (AMOC). We argue that the historical NAWH can potentially be explained by such atmospheric mechanisms reliant on surface wind changes, while oceanic mechanisms related to AMOC changes become more important on longer timescales. Thus, explaining the North Atlantic temperature trends and particularly the NAWH requires considering both atmospheric and oceanic mechanisms.more » « less
-
Abstract Over the subtropical Northeast Pacific (NEP), highly reflective low clouds interact with underlying sea surface temperature (SST) to constitute a local positive feedback. Recent modeling studies showed that, together with wind–evaporation–SST (WES) feedback, the summertime low cloud–SST feedback promotes nonlocal trade wind variations, modulating subsequent evolution of El Niño–Southern Oscillation (ENSO). This study aims to identify drivers of summertime low-cloud variations, using satellite observations and global atmosphere model simulations forced with observed SST. A transbasin teleconnection is identified, where the north tropical Atlantic (NTA) warming induced by the North Atlantic Oscillation (NAO) increases precipitation, exciting warm Rossby waves that extend into the NEP. The resultant enhancement of static stability promotes summertime low cloud–SST variability. By regressing out the effects of the preceding ENSO and NTA SST, atmospheric internal variability over the extratropical North Pacific, including the North Pacific Oscillation (NPO), is found to drive the NEP cooling by latent heat loss and subsequent summer low cloud–SST variability. With the help of the background trade winds and WES feedback, the SST anomalies extend southwestward from the low-cloud region, accompanied by ENSO in the following winter. This suggests the nonlocal effects of low clouds identified by recent studies. Analysis of a 500-yr climate model simulation corroborates the NTA and NPO forcing of NEP low cloud–SST variability and subsequent ENSO.more » « less
-
Abstract The influence of eastern tropical Pacific (EPAC; 10°S–10°N, 140°–80°W) wind anomalies on El Niño is investigated using observations and model experiments. Extreme and moderate El Niños exhibit contrasting anomalous wind patterns in the EPAC during the peak and decay phases: westerly wind anomalies during extreme El Niño and southeasterly (southwesterly) wind anomalies south (north) of the equator during moderate El Niño. Experiments with an ocean general circulation model indicate that for extreme El Niño, the eastward intrusion of westerly wind anomalies contributes to the prolonged positive sea surface temperature (SST) anomalies in the eastern equatorial Pacific throughout boreal spring by weakened upwelling and horizontal advection. For moderate El Niño, by contrast, both the meridional and zonal anomalous winds over the EPAC are important in the rapid (slow) SST cooling south (north) of the equator through advection and wind–evaporation–SST feedback. Atmospheric model experiments confirm that these EPAC anomalous winds are primarily forced by tropical SST anomalies. The interplay between wind and SST anomalies suggests positive air–sea feedbacks over EPAC during the decay phase of El Niño. Ocean model results show that the frequency of extreme El Niño increases when EPAC wind anomalies are removed, suggesting the importance of EPAC winds for El Niño diversity.more » « less
-
Abstract Wind-driven and thermohaline circulations, two major components of global large-scale ocean circulations, are intrinsically related. As part of the thermohaline circulation, the Atlantic Meridional Overturning Circulation has been observed and is expected to decline over the twenty-first century, potentially modulating global wind-driven circulation. Here we perform coupled climate model experiments with either a slow or steady Atlantic overturning under anthropogenic warming to segregate its effect on wind-driven circulation. We find that the weakened Atlantic overturning generates anticyclonic surface wind anomalies over the subpolar North Atlantic to decelerate the gyre circulation there. Fingerprints of overturning slowdown are evident on Atlantic western boundary currents, encompassing a weaker northward Gulf Stream and Guiana Current and a stronger southward Brazil Current. Beyond the Atlantic, the weakened Atlantic overturning causes a poleward displacement of Southern Hemisphere surface westerly winds by changing meridional gradients of atmospheric temperature, leading to poleward shifts of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulations.more » « less
An official website of the United States government
