Anthropogenic influences have led to a strengthening and poleward shift of westerly winds over the Southern Ocean, especially during austral summer. We use observations, an idealized eddy‐resolving ocean sea ice channel model, and a global coupled model to explore the Southern Ocean response to a step change in westerly winds. Previous work hypothesized a two time scale response for sea surface temperature. Initially, Ekman transport cools the surface before sustained upwelling causes warming on decadal time scales. The fast response is robust across our models and the observations: We find Ekman‐driven cooling in the mixed layer, mixing‐driven warming below the mixed layer, and a small upwelling‐driven warming at the temperature inversion. The long‐term response is inaccessible from observations. Neither of our models shows a persistent upwelling anomaly, or long‐term, upwelling‐driven subsurface warming. Mesoscale eddies act to oppose the anomalous wind‐driven upwelling, through a process known as eddy compensation, thereby preventing long‐term warming.
Since the 1950s, observations and climate models show an amplification of sea surface temperature (SST) seasonal cycle in response to global warming over most of the global oceans except for the Southern Ocean (SO), however the cause remains poorly understood. In this study, we analyzed observations, ocean reanalysis, and a set of historical and abruptly quadrupled CO2simulations from the Coupled Model Intercomparison Project Phase 6 archive and found that the weakened SST seasonal cycle over the SO could be mainly attributed to the intensification of summertime westerly winds. Under the historical warming, the intensification of summertime westerly winds over the SO effectively deepens ocean mixed layer and damps surface warming, but this effect is considerably weaker in winter, thus weakening the SST seasonal cycle. This wind‐driven mechanism is further supported by our targeted coupled model experiments with the wind intensification effects being removed.
more » « less- Award ID(s):
- 1951713
- NSF-PAR ID:
- 10532914
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 14
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract This study examines the climate response to a sea surface temperature (SST) warming imposed over the southwest Tropical Indian Ocean (TIO) in a coupled ocean-atmosphere model. The results indicate that the southwest TIO SST warming can remotely modulate the atmospheric circulation over the western North Pacific (WNP) via inter-basin air-sea interaction during early boreal summer. The southwest TIO SST warming induces a “C-shaped” wind response with northeasterly and northwesterly anomalies over the north and south TIO, respectively. The northeasterly wind anomalies contribute to the north TIO SST warming via a positive Wind-Evaporation-SST(WES) feedback after the Asian summer monsoon onset. In June, the easterly wind response extends into the WNP, inducing an SST cooling by WES feedback on the background trade winds. Both the north TIO SST warming and the WNP SST cooling contribute to an anomalous anticyclonic circulation (AAC) over the WNP. The north TIO SST warming, WNP SST cooling, and AAC constitute an inter-basin coupled mode called the Indo-western Pacific ocean capacitor (IPOC), and the southwest TIO SST warming could be a trigger for IPOC. While the summertime southwest TIO SST warming is often associated with antecedent El Niño, the warming in 2020 seems to be related to extreme Indian Ocean Dipole in 2019 fall. The strong southwest TIO SST warming seems to partly explain the strong summer AAC of 2020 over the WNP even without a strong antecedent El Niño.more » « less
-
Abstract In recent years, the Southern Ocean has experienced unprecedented surface warming and sea ice loss—a stark reversal of the sea ice expansion and surface cooling that prevailed over the preceding decades. Here, we examine the mechanisms that led to the abrupt circumpolar surface warming events that occurred in late 2016 and 2019 and assess the role of internal climate variability. A mixed layer heat budget analysis reveals that these recent circumpolar surface warming events were triggered by a weakening of the circumpolar westerlies, which decreased northward Ekman transport and accelerated the seasonal shoaling of the mixed layer. We emphasize the underappreciated effect of the latter mechanism, which played a dominant role and amplified the warming effect of air–sea heat fluxes during months of peak solar insolation. An examination of the CESM1 large ensemble demonstrates that these recent circumpolar warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM), whereby negative SAM in austral spring favors shallower mixed layers and anomalously high summertime SST. A key insight from this analysis is that the seasonal phasing of springtime mixed layer depth shoaling is an important contributor to summertime SST variability in the Southern Ocean. Thus, future Southern Ocean summertime SST extremes will depend on the coevolution of mixed layer depth and surface wind variability.
Significance Statement This study examines how reductions in the strength of the circumpolar westerlies can produce abrupt and extreme surface warming across the Southern Ocean. A key insight is that the mixed layer temperature is most sensitive to surface wind perturbations in late austral spring, when the regional mixed layer depth and solar insolation approach their respective seasonal minimum and maximum. This heightened surface temperature response to surface wind variability was realized during the austral spring of 2016 and 2019, when a dramatic weakening of the circumpolar westerlies triggered unprecedented warming across the Southern Ocean. In both cases, the anomalously weak circumpolar winds reduced the northward Ekman transport of cool subpolar waters and caused the mixed layer to shoal more rapidly in the spring, with the latter mechanism being more dominant. Using results from an ensemble of coupled climate simulations, we demonstrate that the 2016 and 2019 Southern Ocean warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM). These results suggest that future Southern Ocean surface warming extremes will depend on both the evolution of regional mixed layer depths and interannual wind variability.
-
Abstract The influence of eastern tropical Pacific (EPAC; 10°S–10°N, 140°–80°W) wind anomalies on El Niño is investigated using observations and model experiments. Extreme and moderate El Niños exhibit contrasting anomalous wind patterns in the EPAC during the peak and decay phases: westerly wind anomalies during extreme El Niño and southeasterly (southwesterly) wind anomalies south (north) of the equator during moderate El Niño. Experiments with an ocean general circulation model indicate that for extreme El Niño, the eastward intrusion of westerly wind anomalies contributes to the prolonged positive sea surface temperature (SST) anomalies in the eastern equatorial Pacific throughout boreal spring by weakened upwelling and horizontal advection. For moderate El Niño, by contrast, both the meridional and zonal anomalous winds over the EPAC are important in the rapid (slow) SST cooling south (north) of the equator through advection and wind–evaporation–SST feedback. Atmospheric model experiments confirm that these EPAC anomalous winds are primarily forced by tropical SST anomalies. The interplay between wind and SST anomalies suggests positive air–sea feedbacks over EPAC during the decay phase of El Niño. Ocean model results show that the frequency of extreme El Niño increases when EPAC wind anomalies are removed, suggesting the importance of EPAC winds for El Niño diversity.more » « less
-
Abstract Over recent decades, the Southern Ocean (SO) has experienced multi‐decadal surface cooling despite global warming. Earlier studies have proposed that recent SO cooling has been caused by the strengthening of surface westerlies associated with a positive trend of the Southern Annular Mode (SAM) forced by ozone depletion. Here we revisit this hypothesis by examining the relationships between the SAM, zonal winds and SO sea‐surface temperature (SST). Applying a low‐frequency component analysis to observations, we show that while positive SAM anomalies can induce SST cooling as previously found, this seasonal‐to‐interannual modulation makes only a small contribution to the observed long‐term SO cooling. Global climate models well capture the observed interannual SAM‐SST relationship, and yet generally fail to simulate the observed multi‐decadal SO cooling. The forced SAM trend in recent decades is thus unlikely the main cause of the observed SO cooling, pointing to a limited role of the Antarctic ozone hole.