We investigate the role of Southern Ocean topography and wind stress in the deep and abyssal ocean overturning and water mass composition using a suite of idealized global ocean circulation models. Specifically, we address how the presence of a meridional ridge in the vicinity of Drake Passage and the formation of an associated Southern Ocean gyre influence the water mass composition of the abyssal cell. Our experiments are carried out using a numerical representation of the global ocean circulation in an idealized two-basin geometry under varying wind stress and Drake Passage ridge height. In the presence of a low Drake Passage ridge, the overall strength of the meridional overturning circulation is primarily influenced by wind stress, with a topographically induced weakening of the middepth cell and concurrent strengthening of the abyssal cell occurring only after ridge height passes 2500 m. Passive tracer experiments show that a strengthening middepth cell leads to increased abyssal ventilation by North Atlantic water masses, as more North Atlantic Deep Water (NADW) enters the Southern Ocean and then spreads into the Indo-Pacific. We repeat our tracer experiments without restoring in the high-latitude Southern Ocean in order to identify the origin of water masses that circulate through the Southern Ocean before sinking into the abyss as Antarctic Bottom Water. Our results from these “exchange” tracer experiments show that an increasing ridge height in Drake Passage and the concurrent gyre spinup lead to substantially decreased NADW-origin waters in the abyssal ocean, as more surface waters from north of the Antarctic Circumpolar Current (ACC) are transferred into the Antarctic Bottom Water formation region. Significance StatementThe objective of this study is to investigate how topographic features in the Southern Ocean can affect the overall structure of Earth’s large-scale ocean circulation and the distribution of water masses in the abyssal ocean. We focus on the Southern Ocean because the region is of central importance for exchange between the Atlantic and Indo-Pacific Ocean basins and for CO2and heat uptake into the abyssal ocean. Our results indicate that Southern Ocean topography plays a major role in the overall circulation by 1) controlling the direct transfer of abyssal waters from the Atlantic to the Indo-Pacific via its influence on the Atlantic meridional overturning circulation and 2) controlling the coupling between the abyssal ocean and surface waters north of the Antarctic Circumpolar Current via the Southern Ocean gyre. 
                        more » 
                        « less   
                    
                            
                            Atlantic Meridional Overturning Circulation slowdown modulates wind-driven circulations in a warmer climate
                        
                    
    
            Abstract Wind-driven and thermohaline circulations, two major components of global large-scale ocean circulations, are intrinsically related. As part of the thermohaline circulation, the Atlantic Meridional Overturning Circulation has been observed and is expected to decline over the twenty-first century, potentially modulating global wind-driven circulation. Here we perform coupled climate model experiments with either a slow or steady Atlantic overturning under anthropogenic warming to segregate its effect on wind-driven circulation. We find that the weakened Atlantic overturning generates anticyclonic surface wind anomalies over the subpolar North Atlantic to decelerate the gyre circulation there. Fingerprints of overturning slowdown are evident on Atlantic western boundary currents, encompassing a weaker northward Gulf Stream and Guiana Current and a stronger southward Brazil Current. Beyond the Atlantic, the weakened Atlantic overturning causes a poleward displacement of Southern Hemisphere surface westerly winds by changing meridional gradients of atmospheric temperature, leading to poleward shifts of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10556209
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Mitigation and adaptation strategies for climate change depend on accurate climate projections for the coming decades. While changes in radiative heat fluxes are known to contribute to surface warming, changes to ocean circulation can also impact the rate of surface warming. Previous studies suggest that projected changes to ocean circulation reduce the rate of global warming. However, these studies consider large greenhouse gas forcing scenarios, which induce a significant buoyancy‐driven decline of the Atlantic Meridional Overturning Circulation. Here, we use a climate model to quantify the previously unknown impact of changes to wind‐driven ocean circulation on global surface warming. Wind‐driven ocean circulation changes amplify the externally forced warming rate by 17% from 1979 to 2014. Accurately simulating changes to the atmospheric circulation is key to improving near‐term climate projections.more » « less
- 
            Abstract Decadal thermohaline anomalies carried northward by the North Atlantic Current are an important source of predictability in the North Atlantic region. Here, we investigate whether these thermohaline anomalies influence surface-forced water mass transformation (SFWMT) in the eastern subpolar gyre using the reanalyses EN4.2.2 for the ocean and the ERA5 for the atmosphere. In addition, we follow the propagation of thermohaline anomalies along two paths: in the subpolar North Atlantic and the Norwegian Sea. We use observation-based datasets (HadISST, EN4.2.2, and Ishii) between 1947 and 2021 and apply complex empirical orthogonal functions. Our results show that when a warm anomaly enters the eastern subpolar gyre, more SFWMT occurs in light-density classes (27.0–27.2 kg m−3). In contrast, when a cold anomaly enters the eastern subpolar gyre, more SFWMT occurs in denser classes (27.4–27.5 kg m−3). Following the thermohaline anomalies in both paths, we find alternating warm–salty and cold–fresh subsurface anomalies, repeating throughout the 74-yr-long record with four warm–salty and cold–fresh periods after the 1950s. The cold–fresh anomaly periods happen simultaneously with the Great Salinity Anomaly events. Moreover, the propagation of thermohaline anomalies is faster in the subpolar North Atlantic (SPNA) than in the Norwegian Sea, especially for temperature anomalies. These findings might have implications for our understanding of the decadal variability of the lower limb of the Atlantic meridional overturning circulation and predictability in the North Atlantic region. Significance StatementAnomalously warm–salty or cold–fresh water, carried by the North Atlantic Current toward the Arctic, is a source of climate predictability. In this study, we investigate 1) how these ocean anomalies influence the transformation of water masses in the eastern subpolar gyre and 2) their subsequent propagation poleward and northwestward. The key findings reveal that anomalously warm waters entering the eastern subpolar gyre lead to increased transformation in lighter water masses, while cold anomalies affect denser water masses. These anomalies propagate more than 2 times faster toward the Greenland coast (northwestward) than toward the Arctic (poleward). Our findings contribute to enhancing the understanding of decadal predictability in the northern North Atlantic, including its influence on the Atlantic meridional overturning circulation.more » « less
- 
            Abstract The Deep Western Boundary Current (DWBC) – the primary component of the lower limb of the Atlantic Meridional Overturning Circulation – flows along the eastern flank of Greenland from a combination of Denmark Strait Overflow Water and Iceland Scotland Overflow Water. The Overturning in the Subpolar North Atlantic Program (OSNAP) has continuously measured the DWBC since 2014 using current meters, temperature/salinity sensors, and acoustic doppler current profilers. This mooring array located near Cape Farewell also incorporates data from the Ocean Observatories Initiative’s Global Irminger Sea Array to create the longest continuous observations of the DWBC closest to where Iceland Scotland Overflow Water and Denmark Strait Overflow water first merge. This study reveals that the DWBC has decreased by 26% over the first six years of OSNAP observations primarily due to a thinning of the traditionally defined DWBC layer (σθ > 27.8 kg m-3) due to a known freshening signal moving through the subpolar region. Despite this decrease, the Atlantic Meridional Overturning Circulation as calculated by OSNAP has remained relatively steady over the same period. Ultimately, the reason for this difference is due to the methods used to define these two circulations. Finding such notably different trends for two seemingly dependent circulations raises the question of how to best define these transports.more » « less
- 
            Abstract Since the inception of the international South Atlantic Meridional Overturning Circulation initiative in the 21st century, substantial advances have been made in observing and understanding the Southern Hemisphere component of the Atlantic Meridional Overturning Circulation (AMOC). Here we synthesize insights gained into overturning flows, interocean exchanges, and water mass distributions and pathways in the South Atlantic. The overturning circulation in the South Atlantic uniquely carries heat equatorward and exports freshwater poleward and consists of two strong overturning cells. Density and pressure gradients, winds, eddies, boundary currents, and interocean exchanges create an energetic circulation in the subtropical and tropical South Atlantic Ocean. The relative importance of these drivers varies with the observed latitude and time scale. AMOC, interocean exchanges, and climate changes drive ocean warming at all depths, upper ocean salinification, and freshening in the deep and abyssal ocean in the South Atlantic. Long-term sustained observations are critical to detect and understand these changes and their impacts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
