Automation misuse and acceptance, influenced by trust, environmental conditions, and confidence, have hindered drivers from fully benefiting from partially automated vehicles. This study investigates how driver trust changes with AV reliance, differences in mental and physiological states, and continuous measures’ effectiveness. The takeover drivers reported lower trust than the non-takeover drivers in all scenarios. Nontakeover drivers’ elevated DLPFC activation aligns with trust networks and emotion regulation. The groups also differed in neural activation preand during scenarios with the takeover group showed more PFC, V2V3, and IFC engagement pre-scenario. Gaze revealed the takeover group fixated more on the AV button or dashboard, indicating readiness to take over, while non-takeover drivers focused on the rearview mirror, reflecting situational awareness. HRV responses showed higher physiological arousal in the takeover group pre-scenario. In summary, our multimodal approach reveals takeover behavior is associated with lower trust, cognitive unloading, increased stress, and anticipatory visual attention.
more »
« less
Understanding Reliance Decisions in Automated Vehicles Using Random Forest Analysis
Driver reliance on automated vehicles (AV) is a critical component of safety particularly during high-risk traffic scenarios. Factors that influence reliance, including trust, situation awareness, fatigue, and demographics, have been independently explored; however, few analyses have investigated predicting AV reliance and compared factors comprehensively. The goals of this study were to develop a random forest (RF) model to predict reliance and to analyze the importance of factors for reliance decisions. We leveraged data from a driving simulation study where participants encountered four traffic events including responding to an illegal vehicle crossing, managing construction zones, stopping at a vandalized stop sign, and a pedestrian detection task. The dataset included reliance decisions and subjective assessments of dispositional trust, situational trust, fatigue, and workload. An RF model fit to the dataset using cross validation achieved an average AUC of 0.81 and accuracy of 0.77 and situational trust emerged as the most influential predictor.
more »
« less
- Award ID(s):
- 2310621
- PAR ID:
- 10532931
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 68
- Issue:
- 1
- ISSN:
- 1071-1813
- Format(s):
- Medium: X Size: p. 910-911
- Size(s):
- p. 910-911
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences.more » « less
-
null (Ed.)To account for privacy perceptions and preferences in user models and develop personalized privacy systems, we need to understand how users make privacy decisions in various contexts. Existing studies of privacy perceptions and behavior focus on overall tendencies toward privacy, but few have examined the context-specific factors in privacy decision making. We conducted a survey on Mechanical Turk (N=401) based on the theory of planned behavior (TPB) to measure the way users’ perceptions of privacy factors and intent to disclose information are affected by three situational factors embodied hypothetical scenarios: information type, recipients’ role, and trust source. Results showed a positive relationship between subjective norms and perceived behavioral control, and between each of these and situational privacy attitude; all three constructs are significantly positively associated with intent to disclose. These findings also suggest that, situational factors predict participants’ privacy decisions through their influence on the TPB constructs.more » « less
-
Eco-driving has garnered considerable research attention owing to its potential socio-economic impact, including enhanced public health and mitigated climate change effects through the reduction of greenhouse gas emissions. With an expectation of more autonomous vehicles (AVs) on the road, an eco-driving strategy in hybrid traffic networks encompassing AV and human-driven vehicles (HDVs) with the coordination of traffic lights is a challenging task. The challenge is partially due to the insufficient infrastructure for collecting, transmitting, and sharing real-time traffic data among vehicles, facilities, and traffic control centers, and the following decision-making of agents involved in traffic control. Additionally, the intricate nature of the existing traffic network, with its diverse array of vehicles and facilities, contributes to the challenge by hindering the development of a mathematical model for accurately characterizing the traffic network. In this study, we utilized the Simulation of Urban Mobility (SUMO) simulator to tackle the first challenge through computational analysis. To address the second challenge, we employed a model-free reinforcement learning (RL) algorithm, proximal policy optimization, to decide the actions of AV and traffic light signals in a traffic network. A novel eco-driving strategy was proposed by introducing different percentages of AV into the traffic flow and collaborating with traffic light signals using RL to control the overall speed of the vehicles, resulting in improved fuel consumption efficiency. Average rewards with different penetration rates of AV (5%, 10%, and 20% of total vehicles) were compared to the situation without any AV in the traffic flow (0% penetration rate). The 10% penetration rate of AV showed a minimum time of convergence to achieve average reward, leading to a significant reduction in fuel consumption and total delay of all vehicles.more » « less
-
Trust in automation has been mainly studied in the cognitive perspective, though some researchers have shown that trust is also influenced by emotion. Therefore, it is essential to investigate the relationships between emotions and trust. In this study, we explored the pattern of 19 anticipated emotions associated with two levels of trust (i.e., low vs. high levels of trust) elicited from two levels of autonomous vehicles (AVs) performance (i.e., failure and non-failure) from 105 participants from Amazon Mechanical Turk (AMT). Trust was assessed at three layers i.e., dispositional, initial learned, and situational trust. The study was designed to measure how emotions are affected with low and high levels of trust. Situational trust was significantly correlated with emotions that a high level of trust significantly improved participants’ positive emotions, and vice versa. We also identified the underlying factors of emotions associated with situational trust. Our results offered important implications on anticipated emotions associated with trust in AVs.more » « less
An official website of the United States government
