Theoretical and empirical comparisons have been made to assess the expressive power and performance of invariant and equivariant GNNs. However, there is currently no theoretical result comparing the expressive power of k-hop invariant GNNs and equivariant GNNs. Additionally, little is understood about whether
the performance of equivariant GNNs, employing steerable features up to type-L, increases as L grows – especially when the feature dimension is held constant. In this study, we introduce a key lemma that allows us to analyze steerable features by examining their corresponding invariant features. The lemma facilitates us
in understanding the limitations of k-hop invariant GNNs, which fail to capture the global geometric structure due to the loss of geometric information between local structures. Furthermore, we analyze the ability of steerable features to carry information by studying their corresponding invariant features. In particular,
we establish that when the input spatial embedding has full rank, the information carrying ability of steerable features is characterized by their dimension and remains independent of the feature types. This suggests that when the feature dimension is constant, increasing L does not lead to essentially improved performance in
equivariant GNNs employing steerable features up to type-L. We substantiate our theoretical insights with numerical evidence.
more »
« less
On the Implicit Bias of Linear Equivariant Steerable Networks
We study the implicit bias of gradient flow on linear equivariant steerable networks in group-invariant binary classification. Our findings reveal that the parameterized predictor converges in direction to the unique group-invariant classifier with a maximum margin defined by the input group action. Under a unitary assumption on the input representation, we establish the equivalence between steerable networks and data augmentation. Furthermore, we demonstrate the improved margin and generalization bound of steerable networks over their non-invariant counterparts.
more »
« less
- PAR ID:
- 10532988
- Publisher / Repository:
- Advances in Neural Information Processing Systems 36 (NeurIPS 2023)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Theoretical and empirical comparisons have been made to assess the expressive power and performance of invariant and equivariant GNNs. However, there is currently no theoretical result comparing the expressive power of k-hop invariant GNNs and equivariant GNNs. Additionally, little is understood about whether the performance of equivariant GNNs, employing steerable features up to type-L, increases as L grows – especially when the feature dimension is held constant. In this study, we introduce a key lemma that allows us to analyze steerable features by examining their corresponding invariant features. The lemma facilitates us in understanding the limitations of k-hop invariant GNNs, which fail to capture the global geometric structure due to the loss of geometric information between local structures. Furthermore, we analyze the ability of steerable features to carry information by studying their corresponding invariant features. In particular, we establish that when the input spatial embedding has full rank, the informationcarrying ability of steerable features is characterized by their dimension and remains independent of the feature types. This suggests that when the feature dimension is constant, increasing L does not lead to essentially improved performance in equivariant GNNs employing steerable features up to type-L. We substantiate our theoretical insights with numerical evidence.more » « less
-
To achieve this, we draw inspiration from equivariant convolution networks and model the path planning problem as a set of signals over grids. We demonstrate that value iteration can be treated as a linear equivariant operator, which is effectively a steerable convolution. Building upon Value Iteration Networks (VIN), we propose a new Symmetric Planning (SymPlan) framework that incorporates rotation and reflection symmetry using steerable convolution networks. We evaluate our approach on four tasks: 2D navigation, visual navigation, 2 degrees of freedom (2-DOF) configuration space manipulation, and 2-DOF workspace manipulation. Our experimental results show that our symmetric planning algorithms significantly improve training efficiency and generalization performance compared to non-equivariant baselines, including VINs and GPPN.more » « less
-
null (Ed.)Providing reliable model uncertainty estimates is imperative to enabling robust decision making by autonomous agents and humans alike. While recently there have been significant advances in confidence calibration for trained models, examples with poor calibration persist in most calibrated models. Consequently, multiple techniques have been proposed that leverage label-invariant transformations of the input (i.e., an input manifold) to improve worst-case confidence calibration. However, manifold-based confidence calibration techniques generally do not scale and/or require expensive retraining when applied to models with large input spaces (e.g., ImageNet). In this paper, we present the recursive lossy label-invariant calibration (ReCal) technique that leverages label-invariant transformations of the input that induce a loss of discriminatory information to recursively group (and calibrate) inputs – without requiring model retraining. We show that ReCal outperforms other calibration methods on multiple datasets, especially, on large-scale datasets such as ImageNet.more » « less
-
Medical steerable needles can follow 3D curvilinear trajectories to avoid anatomical obstacles and reach clinically significant targets inside the human body. Automating steerable needle procedures can enable physicians and patients to harness the full potential of steerable needles by maximally leveraging their steerability to safely and accurately reach targets for medical procedures such as biopsies. For the automation of medical procedures to be clinically accepted, it is critical from a patient care, safety, and regulatory perspective to certify the correctness and effectiveness of the planning algorithms involved in procedure automation. In this paper, we take an important step toward creating a certifiable optimal planner for steerable needles. We present an efficient, resolution-complete motion planner for steerable needles based on a novel adaptation of multi-resolution planning. This is the first motion planner for steerable needles that guarantees to compute in finite time an obstacle-avoiding plan (or notify the user that no such plan exists), under clinically appropriate assumptions. Based on this planner, we then develop the first resolution-optimal motion planner for steerable needles that further provides theoretical guarantees on the quality of the computed motion plan, that is, global optimality, in finite time. Compared to state-of-the-art steerable needle motion planners, we demonstrate with clinically realistic simulations that our planners not only provide theoretical guarantees but also have higher success rates, have lower computation times, and result in higher quality plans.more » « less