skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2052525

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionThe moment quantities associated with the nonlinear Schrödinger equation offer important insights into the evolution dynamics of such dispersive wave partial differential equation (PDE) models. The effective dynamics of the moment quantities are amenable to both analytical and numerical treatments. MethodsIn this paper, we present a data-driven approach associated with the “Sparse Identification of Nonlinear Dynamics” (SINDy) to capture the evolution behaviors of such moment quantities numerically. Results and DiscussionOur method is applied first to some well-known closed systems of ordinary differential equations (ODEs) which describe the evolution dynamics of relevant moment quantities. Our examples are, progressively, of increasing complexity and our findings explore different choices within the SINDy library. We also consider the potential discovery of coordinate transformations that lead to moment system closure. Finally, we extend considerations to settings where a closed analytical form of the moment dynamics is not available. 
    more » « less
    Free, publicly-accessible full text available October 30, 2025
  2. We study the implicit bias of gradient flow on linear equivariant steerable networks in group-invariant binary classification. Our findings reveal that the parameterized predictor converges in direction to the unique group-invariant classifier with a maximum margin defined by the input group action. Under a unitary assumption on the input representation, we establish the equivalence between steerable networks and data augmentation. Furthermore, we demonstrate the improved margin and generalization bound of steerable networks over their non-invariant counterparts. 
    more » « less
  3. We rigorously quantify the improvement in the sample complexity of variational divergence estimations for group-invariant distributions. In the cases of the Wasserstein-1 metric and the Lipschitz-regularized $$\alpha$$-divergences, the reduction of sample complexity is proportional to an ambient-dimension-dependent power of the group size. For the maximum mean discrepancy (MMD), the improvement of sample complexity is more nuanced, as it depends on not only the group size but also the choice of kernel. Numerical simulations verify our theories. 
    more » « less
  4. Encoding the scale information explicitly into the representation learned by a convolutional neural network (CNN) is beneficial for many computer vision tasks especially when dealing with multiscale inputs. We study, in this paper, a scaling-translation-equivariant (ST-equivariant) CNN with joint convolutions across the space and the scaling group, which is shown to be both sufficient and necessary to achieve equivariance for the regular representation of the scaling-translation group ST. To reduce the model complexity and computational burden, we decompose the convolutional filters under two pre-fixed separable bases and truncate the expansion to low-frequency components. A further benefit of the truncated filter expansion is the improved deformation robustness of the equivariant representation, a property which is theoretically analyzed and empirically verified. Numerical experiments demonstrate that the proposed scaling-translation-equivariant network with decomposed convolutional filters (ScDCFNet) achieves significantly improved performance in multiscale image classification and better interpretability than regular CNNs at a reduced model size. 
    more » « less
  5. Generative adversarial networks (GANs), a class of distribution-learning methods based on a two-player game between a generator and a discriminator, can generally be formulated as a minmax problem based on the variational representation of a divergence between the unknown and the generated distributions. We introduce structure-preserving GANs as a data-efficient framework for learning distributions with additional structure such as group symmetry, by developing new variational representations for divergences. Our theory shows that we can reduce the discriminator space to its projection on the invariant discriminator space, using the conditional expectation with respect to the sigma-algebra associated to the underlying structure. In addition, we prove that the discriminator space reduction must be accompanied by a careful design of structured generators, as flawed designs may easily lead to a catastrophic “mode collapse” of the learned distribution. We contextualize our framework by building symmetry-preserving GANs for distributions with intrinsic group symmetry, and demonstrate that both players, namely the equivariant generator and invariant discriminator, play important but distinct roles in the learning process. Empirical experiments and ablation studies across a broad range of data sets, including real-world medical imaging, validate our theory, and show our proposed methods achieve significantly improved sample fidelity and diversity—almost an order of magnitude measured in Frechet Inception Distance—especially in the small data regime 
    more » « less
  6. Incorporating group symmetry directly into the learning process has proved to be an effective guideline for model design. By producing features that are guaranteed to transform covariantly to the group actions on the inputs, group-equivariant convolutional neural net- works (G-CNNs) achieve significantly improved generalization performance in learning tasks with intrinsic symmetry. General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation, but only individu- ally. We present, in this paper, a roto-scale-translation equivariant CNN (RST-CNN), that is guaranteed to achieve equivariance jointly over these three groups via coupled group con- volutions. Moreover, as symmetry transformations in reality are rarely perfect and typically subject to input deformation, we provide a stability analysis of the equivariance of representation to input distortion, which motivates the truncated expansion of the convolutional filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves deformation-robust RS T equivariance, i.e., the RST symmetry is still “approximately” preserved when the transformation is “contaminated” by a nuisance data deformation, a property that is especially important for out-of-distribution generalization. Numerical experiments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model yields remarkable gains over prior arts, especially in the small data regime where both rotation and scaling variations are present within the data. 
    more » « less
  7. null (Ed.)