skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximum temperatures determine the habitat affiliations of North American mammals
Addressing the ongoing biodiversity crisis requires identifying the winners and losers of global change. Species are often categorized based on how they respond to habitat loss; for example, species restricted to natural environments, those that most often occur in anthropogenic habitats, and generalists that do well in both. However, species might switch habitat affiliations across time and space: an organism may venture into human-modified areas in benign regions but retreat into thermally buffered forested habitats in areas with high temperatures. Here, we apply community occupancy models to a large-scale camera trapping dataset with 29 mammal species distributed over 2,485 sites across the continental United States, to ask three questions. First, are species’ responses to forest and anthropogenic habitats consistent across continental scales? Second, do macroclimatic conditions explain spatial variation in species responses to land use? Third, can species traits elucidate which taxa are most likely to show climate-dependent habitat associations? We found that all species exhibited significant spatial variation in how they respond to land-use, tending to avoid anthropogenic areas and increasingly use forests in hotter regions. In the hottest regions, species occupancy was 50% higher in forested compared to open habitats, whereas in the coldest regions, the trend reversed. Larger species with larger ranges, herbivores, and primary predators were more likely to change their habitat affiliations than top predators, which consistently affiliated with high forest cover. Our findings suggest that climatic conditions influence species’ space-use and that maintaining forest cover can help protect mammals from warming climates.  more » « less
Award ID(s):
2206783 2211768
PAR ID:
10533030
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
50
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction: Predators can affect prey not only by killing them, but also by causing them to alter their behavior, including patterns of habitat selection. Prey can reduce the risk of predation by moving to habitats where predators are less likely to detect them, less likely to attack, or less likely to succeed. The interaction of such responses to risk with other ecological processes remains relatively unstudied, but in some cases, changes in habitat use to avoid predation may be constrained by competition: larger, dominant competitors should respond freely to predation risk, but the responses of smaller, subordinate competitors may be constrained by the responses of dominant competitors. For large grazing herbivores, an alternative hypothesis proposes that smaller prey species are vulnerable to more predators, and thus should respond more strongly to predation risk. Methods: Here, we tested these two hypotheses with 775 observations of habitat selection by four species of obligate grazers (zebra, wildebeest, puku and oribi) in the immediate presence or absence of four large carnivores (lion, spotted hyena, African wild dog and cheetah) in three ecosystems (Greater Liuwa, Greater Kafue and Luangwa Valley). Patterns of predation within this set were described by observation of 1,105 kills. Results:Our results support the hypothesis that responses to predation risk are strongest for larger, dominant competitors. Even though zebras were killed least often, they showed the strongest shift into cover when carnivores were present. Wildebeest, puku and oribi showed weaker habitat shifts, even though they were more frequently killed. These patterns remained consistent in models that controlled for differences in the hunting mode of the predator (stalking, coursing, or intermediate) and for differences among ecosystems. There was no evidence that smaller species were subject to predation by a broader set of predators. Instead, smaller prey were killed often by smaller predators, and larger prey were killed often by larger predators. Discussion: Broadly, our results show that responses to predation risk interact with interspecific competition. Accounting for such interactions should help to explain the considerable variation in the strength of responses to predation risk that has been observed. 
    more » « less
  2. The conversion of forest to agriculture is considered one of the greatest threats to avian biodiversity, yet how species respond to habitat modification throughout the annual cycle remains unknown. We examined whether forest bird associations with agricultural habitats vary throughout the year, and if species traits influence these relationships. Using data from the eBird community‐science program, we investigated associations between agriculturally‐modified land cover and the occurrence of 238 forest bird species based on three sets of avian traits: migratory strategy, dietary guild, and foraging strategy. We found that the influence of agriculturally‐modified land cover on species distributions varied widely across periods and trait groups but highlighting several broad findings. First, migratory species showed strong seasonal differences in their response to agricultural land cover while resident species did not. Second, there was a migratory strategy by season interaction; Neotropical migrants were most negatively influenced by agricultural land cover during the breeding period while short‐distance migrants were most negatively influenced during the non‐breeding period. Third, regardless of season, some dietary (e.g. insectivores) and foraging guilds (e.g. bark foragers) consistently responded more negatively to agricultural land cover than others (e.g. omnivores and ground foragers, respectively). Fourth, there were greater differences among dietary guilds in their responses to agricultural land cover during the breeding period than during the non‐breeding period, perhaps reflecting how different habitat and ecological requirements enhance the susceptibility of some guilds during reproduction. These results suggest that management efforts across the annual cycle may be oversimplified and thus ineffective when based on broad ecological generalisations that are static in space and time. 
    more » « less
  3. Context Land use change and deforestation drive both biodiversity loss and zoonotic disease transmission in tropical countrysides. For mosquito communities that can include disease vectors, forest loss has been linked to reduced biodiversity and increased vector presence. The spatial scales at which land use and tree cover shape mosquito communities present a knowledge gap relevant to both biodiversity and public health. Objectives We investigated the responses of mosquito species richness and Aedes albopictus disease vector presence to land use and to tree cover surrounding survey sites at different spatial scales. We also investigated species compositional turnover across land uses and along environmental gradients. Methods We paired a field survey of mosquito communities in agricultural, residential, and forested lands in rural southern Costa Rica with remotely sensed tree cover data. We compared mosquito richness and vector presence responses to tree cover measured across scales from 30 to 1000 m, and across land uses. We analyzed mosquito community compositional turnover between land uses and along environmental gradients of tree cover, temperature, elevation, and geographic distance. Results Tree cover was both positively correlated with mosquito species richness and negatively correlated with the presence of the common invasive dengue vector Ae. albopictus at small spatial scales of 90–250 m. Land use predicted community composition and Ae. albopictus presence. Conclusions The results suggest that local tree cover preservation and expansion can support mosquito species richness and reduce disease vector presence. The identified spatial range at which tree cover shapes mosquito communities can inform the development of land management practices to protect both ecosystem and public health. 
    more » « less
  4. ABSTRACT Species distribution modeling can be used to predict environmental suitability, and removing areas currently lacking appropriate vegetation can refine range estimates for conservation assessments. However, the uncertainty around geographic coordinates can exceed the fine resolution of remotely sensed habitat data. Here, we present a novel methodological approach to reflect this reality by processing habitat data to maintain its fine resolution, but with new values characterizing a larger surrounding area (the “neighborhood”). We implement its use for a forest‐dwelling species (Handleyomys chapmani) considered threatened by the IUCN. We determined deforestation tolerance threshold values by matching occurrence records with forest cover data using two methods: (1) extracting the exact pixel value where a record fell; and (2) using the neighborhood value (more likely to characterize conditions within the radius of actual sampling). We removed regions below these thresholds from the climatic suitability prediction, identifying areas of inferred habitat loss. We calculated Extent of Occurrence (EOO) and Area of Occupancy (AOO), two metrics used by the IUCN for threat level categorization. The values estimated here suggest removing the species from threatened categories. However, the results highlight spatial patterns of loss throughout the range not reflected in these metrics, illustrating drawbacks of EOO and showing how localized losses largely disappeared when resampling to the 2 × 2 km grid required for AOO. The neighborhood approach can be applied to various data sources (NDVI, soils, marine, etc.) to calculate trends over time and should prove useful to many terrestrial and aquatic species. It is particularly useful for species having high coordinate uncertainty in regions of low spatial autocorrelation (where small georeferencing errors can lead to great differences in habitat, misguiding conservation assessments used in policy decisions). More generally, this study illustrates and enhances the practicality of using habitat‐refined distribution maps for biogeography and conservation. 
    more » « less
  5. The non-breeding season is an understudied, yet likely critical, period for many species. Understanding species’ resource requirements, and determining when limited resources and increased densities may lead to intraspecific competition and demographic partitioning, may aid species conservation efforts. Monitoring species’ resource requirements during the non-breeding season may be more important in highly modified ecosystems, such as intensive agricultural landscapes, where anthropogenic pressures may further limit resources. The Loggerhead Shrike (Lanius ludovicianus) is a rapidly declining avian species that winters in agricultural areas in the southeastern United States, but little is known about their ecology or potential demographic partitioning in this context. To fill these knowledge gaps, we compared multi-scale habitat selection, survival, and space use across age and sex classes of shrikes inhabiting an agricultural landscape in Arkansas, USA. We found that habitat selection differed among demographic classes. Specifically, females preferred areas with more fallow cover, utility wires, and anthropogenic perches, whereas males preferred areas with more agricultural fields and ditches and less soybean cover. However, overall, shrikes exhibited numerous similarities in habitat selection, generally preferring areas with greater developed land cover (within a predominantly agricultural landscape), greater water availability, and taller perches. Despite the observed variability in habitat selection, no differences in apparent seasonal and annual survival rates or home range size existed among groups. However, non-breeding dispersal distance between years differed by age class, with older individuals being more site faithful than younger individuals. We suggest that the demographic habitat partitioning we detected may reflect adaptive differential life history strategies associated with age and sex classes, but further study of habitat selection by Loggerhead Shrikes across seasons and habitat types will help clarify the variation, importance, and potential carry-over effects of non-breeding habitat partitioning. 
    more » « less