skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating demographic habitat partitioning and its consequences during the non-breeding season in Loggerhead Shrikes
The non-breeding season is an understudied, yet likely critical, period for many species. Understanding species’ resource requirements, and determining when limited resources and increased densities may lead to intraspecific competition and demographic partitioning, may aid species conservation efforts. Monitoring species’ resource requirements during the non-breeding season may be more important in highly modified ecosystems, such as intensive agricultural landscapes, where anthropogenic pressures may further limit resources. The Loggerhead Shrike (Lanius ludovicianus) is a rapidly declining avian species that winters in agricultural areas in the southeastern United States, but little is known about their ecology or potential demographic partitioning in this context. To fill these knowledge gaps, we compared multi-scale habitat selection, survival, and space use across age and sex classes of shrikes inhabiting an agricultural landscape in Arkansas, USA. We found that habitat selection differed among demographic classes. Specifically, females preferred areas with more fallow cover, utility wires, and anthropogenic perches, whereas males preferred areas with more agricultural fields and ditches and less soybean cover. However, overall, shrikes exhibited numerous similarities in habitat selection, generally preferring areas with greater developed land cover (within a predominantly agricultural landscape), greater water availability, and taller perches. Despite the observed variability in habitat selection, no differences in apparent seasonal and annual survival rates or home range size existed among groups. However, non-breeding dispersal distance between years differed by age class, with older individuals being more site faithful than younger individuals. We suggest that the demographic habitat partitioning we detected may reflect adaptive differential life history strategies associated with age and sex classes, but further study of habitat selection by Loggerhead Shrikes across seasons and habitat types will help clarify the variation, importance, and potential carry-over effects of non-breeding habitat partitioning.  more » « less
Award ID(s):
2151820
PAR ID:
10615338
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Association of Field Ornithologists, Wiley-Blackwell
Date Published:
Journal Name:
Journal of Field Ornithology
Volume:
95
Issue:
2
ISSN:
1557-9263
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The conversion of forest to agriculture is considered one of the greatest threats to avian biodiversity, yet how species respond to habitat modification throughout the annual cycle remains unknown. We examined whether forest bird associations with agricultural habitats vary throughout the year, and if species traits influence these relationships. Using data from the eBird community‐science program, we investigated associations between agriculturally‐modified land cover and the occurrence of 238 forest bird species based on three sets of avian traits: migratory strategy, dietary guild, and foraging strategy. We found that the influence of agriculturally‐modified land cover on species distributions varied widely across periods and trait groups but highlighting several broad findings. First, migratory species showed strong seasonal differences in their response to agricultural land cover while resident species did not. Second, there was a migratory strategy by season interaction; Neotropical migrants were most negatively influenced by agricultural land cover during the breeding period while short‐distance migrants were most negatively influenced during the non‐breeding period. Third, regardless of season, some dietary (e.g. insectivores) and foraging guilds (e.g. bark foragers) consistently responded more negatively to agricultural land cover than others (e.g. omnivores and ground foragers, respectively). Fourth, there were greater differences among dietary guilds in their responses to agricultural land cover during the breeding period than during the non‐breeding period, perhaps reflecting how different habitat and ecological requirements enhance the susceptibility of some guilds during reproduction. These results suggest that management efforts across the annual cycle may be oversimplified and thus ineffective when based on broad ecological generalisations that are static in space and time. 
    more » « less
  2. Abstract Sex‐related differences in vital rates that drive population change reflect the basic life history of a species. However, for visually monomorphic bird species, determining the effect of sex on demographics can be a challenge. In this study, we investigated the effect of sex on apparent survival, recruitment, and breeding propensity in the Adélie penguin (Pygoscelis adeliae), a monochromatic, slightly size dimorphic species with known age, known sex, and known breeding history data collected during 1996–2019 (n = 2127 birds) from three breeding colonies on Ross Island, Antarctica. Using a multistate capture–mark–recapture maximum‐likelihood model, we estimated apparent survival (), recapture (resighting) probability (), and the probability of transitioning among breeding states and moving between colonies (; colony‐specific non‐juvenile pre‐breeders, breeders, and non‐breeders). Survival rate varied by breeding status and colony, but not sex, and pre‐breeders had higher survival rates than breeders and non‐breeders. Females had a higher probability of recruiting into the breeding population each year and may enter the breeding pool at younger ages. In contrast, both sexes had the same probability of breeding from year to year once they had recruited. Although we detected no direct sex effects on survival, the variation in recruitment probability and age‐at‐first reproduction, along with lower survival rates of breeders compared to pre‐breeders, likely leads to shorter lifespans for females. This is supported by our findings of a male‐biased mean adult sex ratio (ASR) of 1.4 males for every female ( proportion of males = 0.57, SD = 0.07) across all colonies and years in this metapopulation. Our study illustrates how important it can be to disentangle sex‐related variation in population vital rates, particularly for species with complex life histories and demographic dynamics. 
    more » « less
  3. Abstract Small populations of imperiled species are susceptible to the negative consequences of skewed sex‐ratios. In imperiled species with environmental sex determination such as sea turtles, examining sex ratios across a range of environments and population abundance levels can provide insight into factors that influence population resilience, which can then be the foci of management plans for these species. Breeding sex ratios (the ratio of actively breeding males to females during a reproductive season; BSRs) extrapolated from genetic parentage analyses are a common approach for enumerating sex ratios in sea turtles. Such analyses also allow for the characterization of multiple paternity within sea turtle clutches, which should reflect BSRs and breeding behaviors. We characterized the first BSR for a breeding assemblage of loggerhead sea turtles (Caretta caretta) belonging to the temperate, low‐abundance Northern Gulf of Mexico Recovery Unit using genotypes of 16 microsatellite loci from nesting females and hatchlings. Unlike prior studies at both more‐tropical and more‐temperate, and higher‐abundance, Recovery Units in this region, we found a balanced BSR of 1.3:1 males:female and a low incidence (~17%) of multiple paternity. This suggests that there are relatively few males breeding at this assemblage and within this Recovery Unit. Beaches in this region are expected to produce substantial numbers of male hatchlings based on sand temperature data. The relative dearth of mature males may then be due to hydrologic disturbances that disproportionately affect the fitness and survival of male hatchlings, or due to demographic stochasticity. More work is needed to study the factors that might influence male hatchling production and fitness in this region, particularly as climate change is predicted to lead to feminization in global sea turtle populations. Our work demonstrates the broad utility of characterizing BSRs and other sex ratios across a range of populations in imperiled, environmentally sensitive species. 
    more » « less
  4. Weckerly, Floyd W. (Ed.)
    Nomadic movements are often a consequence of unpredictable resource dynamics. However, how nomadic ungulates select dynamic resources is still understudied. Here we examined resource selection of nomadic Mongolian gazelles ( Procapra gutturosa ) in the Eastern Steppe of Mongolia. We used daily GPS locations of 33 gazelles tracked up to 3.5 years. We examined selection for forage during the growing season using the Normalized Difference Vegetation Index (NDVI). In winter we examined selection for snow cover which mediates access to forage and drinking water. We studied selection at the population level using resource selection functions (RSFs) as well as on the individual level using step-selection functions (SSFs) at varying spatio-temporal scales from 1 to 10 days. Results from the population and the individual level analyses differed. At the population level we found selection for higher than average NDVI during the growing season. This may indicate selection for areas with more forage cover within the arid steppe landscape. In winter, gazelles selected for intermediate snow cover, which may indicate preference for areas which offer some snow for hydration but not so much as to hinder movement. At the individual level, in both seasons and across scales, we were not able to detect selection in the majority of individuals, but selection was similar to that seen in the RSFs for those individuals showing selection. Difficulty in finding selection with SSFs may indicate that Mongolian gazelles are using a random search strategy to find forage in a landscape with large, homogeneous areas of vegetation. The combination of random searches and landscape characteristics could therefore obscure results at the fine scale of SSFs. The significant results on the broader scale used for the population level RSF highlight that, although individuals show uncoordinated movement trajectories, they ultimately select for similar vegetation and snow cover. 
    more » « less
  5. Abstract Climate and land use change are two of the primary threats to global biodiversity; however, each species within a community may respond differently to these facets of global change. Although it is typically assumed that species use the habitat that is advantageous for survival and reproduction, anthropogenic changes to the environment can create ecological traps, making it critical to assess both habitat selection (e.g. where species congregate on the landscape) and the influence of selected habitats on the demographic processes that govern population dynamics.We used a long‐term (1958–2011), large‐scale, multi‐species dataset for waterfowl that spans the United States and Canada to estimate species‐specific responses to climate and land use variables in a landscape that has undergone significant environmental change across space and time. We first estimated the effects of change in climate and land use variables on habitat selection and population dynamics for nine species. We then hypothesized that species‐specific responses to environmental change would scale with life‐history traits, specifically: longevity, nesting phenology and female breeding site fidelity.We observed species‐level heterogeneity in the demographic and habitat selection responses to climate and land use change, which would complicate community‐level habitat management. Our work highlights the importance of multi‐species monitoring and community‐level analysis, even among closely related species.We detected several relationships between life‐history traits, particularly nesting phenology, and species' responses to environmental change. One species, the early‐nesting northern pintail (Anas acuta), was consistently at the extreme end of responses to land use and climate predictors and has been a species of conservation concern since their population began to decline in the 1980s. They, and the blue‐winged teal, also demonstrated a positive habitat selection response to the proportion of cropland on the landscape that simultaneously reduced abundance the following year, indicative of susceptibility to ecological traps.By distilling the diversity of species' responses to environmental change within a community, our methodological approach and findings will help improve predictions of community responses to global change and can inform multi‐species management and conservation plans in dynamic landscapes that are based on simple tenets of life‐history theory. 
    more » « less