skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Break Out of a Pigeonhole: A Unified Framework for Examining Miscalibration, Bias, and Stereotype in Recommender Systems
Despite the benefits of personalizing items and information tailored to users’ needs, it has been found that recommender systems tend to introduce biases that favor popular items or certain categories of items and dominant user groups. In this study, we aim to characterize the systematic errors of a recommendation system and how they manifest in various accountability issues, such as stereotypes, biases, and miscalibration. We propose a unified framework that distinguishes the sources of prediction errors into a set of key measures that quantify the various types of system-induced effects, at both the individual and collective levels. Based on our measuring framework, we examine the most widely adopted algorithms in the context of movie recommendation. Our research reveals three important findings: (1) Differences between algorithms: recommendations generated by simpler algorithms tend to be more stereotypical but less biased than those generated by more complex algorithms. (2) Disparate impact on groups and individuals: system-induced biases and stereotypes have a disproportionate effect on atypical users and minority groups (e.g., women and older users). (3) Mitigation opportunity: using structural equation modeling, we identify the interactions between user characteristics (typicality and diversity), system-induced effects, and miscalibration. We further investigate the possibility of mitigating system-induced effects by oversampling underrepresented groups and individuals, which was found to be effective in reducing stereotypes and improving recommendation quality. Our research is the first systematic examination of not only system-induced effects and miscalibration but also the stereotyping issue in recommender systems.  more » « less
Award ID(s):
2318461
PAR ID:
10533040
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Intelligent Systems and Technology
Volume:
15
Issue:
4
ISSN:
2157-6904
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recommender systems learn from past user preferences in order to predict future user interests and provide users with personalized suggestions. Previous research has demonstrated that biases in user profiles in the aggregate can influence the recommendations to users who do not share the majority preference. One consequence of this bias propagation effect is miscalibration, a mismatch between the types or categories of items that a user prefers and the items provided in recommendations. In this paper, we conduct a systematic analysis aimed at identifying key characteristics in user profiles that might lead to miscalibrated recommendations. We consider several categories of profile characteristics, including similarity to the average user, propensity towards popularity, profile diversity, and preference intensity. We develop predictive models of miscalibration and use these models to identify the most important features correlated with miscalibration, given different algorithms and dataset characteristics. Our analysis is intended to help system designers predict miscalibration effects and to develop recommendation algorithms with improved calibration properties. 
    more » « less
  2. null (Ed.)
    Recently there has been a growing interest in fairness-aware recommender systems including fairness in providing consistent performance across different users or groups of users. A recommender system could be considered unfair if the recommendations do not fairly represent the tastes of a certain group of users while other groups receive recommendations that are consistent with their preferences. In this paper, we use a metric called miscalibration for measuring how a recommendation algorithm is responsive to users’ true preferences and we consider how various algorithms may result in different degrees of miscalibration for different users. In particular, we conjecture that popularity bias which is a well-known phenomenon in recommendation is one important factor leading to miscalibration in recommendation. Our experimental results using two real-world datasets show that there is a connection between how different user groups are affected by algorithmic popularity bias and their level of interest in popular items. Moreover, we show that the more a group is affected by the algorithmic popularity bias, the more their recommendations are miscalibrated. 
    more » « less
  3. Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interest. That is why the recommender systems research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, coverage, and serendipity with the hope of promoting information discovery and sustain users’ interest over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ difference: an open-minded user may favor highly novel or diversified recommendations whereas a conservative user’s appetite for novelty or diversity may not be that large. In this paper, we developed a model to approximate an individual’s curiosity distribution over different levels of stimuli guided by the well-known Wundt curve in Psychology. We measured an item’s surprise level to assess the stimulation level and whether it is in the range of the user’s appetite for stimulus. We then proposed a recommendation system framework that considers both user preference and appetite for stimulus where the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’s curiosity to promote intrinsic interest with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high response likelihood. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to traditional approaches. The personalization factor for assessing the stimulus (surprise) strength further helps the recommender achieve smaller (better) inter-user similarity. 
    more » « less
  4. In sequential recommender system applications, it is important to develop models that can capture users' evolving interest over time to successfully recommend future items that they are likely to interact with. For users with long histories, typical models based on recurrent neural networks tend to forget important items in the distant past. Recent works have shown that storing a small sketch of past items can improve sequential recommendation tasks. However, these works all rely on static sketching policies, i.e., heuristics to select items to keep in the sketch, which are not necessarily optimal and cannot improve over time with more training data. In this paper, we propose a differentiable policy for sketching (DiPS), a framework that learns a data-driven sketching policy in an end-to-end manner together with the recommender system model to explicitly maximize recommendation quality in the future. We also propose an approximate estimator of the gradient for optimizing the sketching algorithm parameters that is computationally efficient. We verify the effectiveness of DiPS on real-world datasets under various practical settings and show that it requires up to 50% fewer sketch items to reach the same predictive quality than existing sketching policies. 
    more » « less
  5. In sequential recommender system applications, it is important to develop models that can capture users’ evolving interest over time to successfully recommend future items that they are likely to interact with. For users with long histories, typical models based on recurrent neural networks tend to forget important items in the distant past. Recent works have shown that storing a small sketch of past items can improve sequential recommendation tasks. However, these works all rely on static sketching policies, i.e., heuristics to select items to keep in the sketch, which are not necessarily optimal and cannot improve over time with more training data. In this paper, we propose a differentiable policy for sketching (DiPS), a framework that learns a data-driven sketching policy in an end-to-end manner together with the recommender system model to explicitly maximize recommendation quality in the future. We also propose an approximate estimator of the gradient for optimizing the sketching algorithm parameters that is computationally efficient. We verify the effectiveness of DiPS on real-world datasets under various practical settings and show that it requires up to 50% fewer sketch items to reach the same predictive quality than existing sketching policies. 
    more » « less