skip to main content


Title: One Size Does Not Fit All: Modeling Users’ Personal Curiosity in Recommender Systems
Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interest. That is why the recommender systems research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, coverage, and serendipity with the hope of promoting information discovery and sustain users’ interest over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ difference: an open-minded user may favor highly novel or diversified recommendations whereas a conservative user’s appetite for novelty or diversity may not be that large. In this paper, we developed a model to approximate an individual’s curiosity distribution over different levels of stimuli guided by the well-known Wundt curve in Psychology. We measured an item’s surprise level to assess the stimulation level and whether it is in the range of the user’s appetite for stimulus. We then proposed a recommendation system framework that considers both user preference and appetite for stimulus where the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’s curiosity to promote intrinsic interest with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high response likelihood. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to traditional approaches. The personalization factor for assessing the stimulus (surprise) strength further helps the recommender achieve smaller (better) inter-user similarity.  more » « less
Award ID(s):
1910696
NSF-PAR ID:
10188332
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interests. Therefore the research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, and serendipity with the hope of promoting information discovery and sustaining users’ interests over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ differences in their capacity to experience those ”beyond accuracy” items. Open-minded users may embrace a wider range of recommendations than conservative users. In this paper, we proposed to use curiosity traits to capture such individual users’ differences. We developed a model to approximate an individual’s curiosity distribution over different stimulus levels. We used an item’s surprise level to estimate the stimulus level and whether such a level is in the range of the user’s appetite for stimulus, calledComfort Zone. We then proposed a recommender system framework that considers both user preference and theirComfort Zonewhere the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’sComfort Zonefor stimuli to promote engagement with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high curiosity stimulation. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to the state-of-the-art deep learning approaches. The personalization factor for assessing the surprise stimulus levels further helps the recommender model achieve smaller (better) inter-user similarity.

     
    more » « less
  2. null (Ed.)
    The growing amount of online information today has increased opportunity to discover interesting and useful information. Various recommender systems have been designed to help people discover such information. No matter how accurately the recommender algorithms perform, users’ engagement with recommended results has been complained being less than ideal. In this study, we touched on two human-centered objectives for recommender systems: user satisfaction and curiosity, both of which are believed to play roles in maintaining user engagement and sustain such engagement in the long run. Specifically, we leveraged the concept of surprise and used an existing computational model of surprise to identify relevantly surprising health articles aiming at improving user satisfaction and inspiring their curiosity. We designed a user study to first test the validity of the surprise model in a health news recommender system, called LuckyFind. Then user satisfaction and curiosity were evaluated. We find that the computational surprise model helped identify surprising recommendations at little cost of user satisfaction. Users gave higher ratings on interestingness than usefulness for those surprising recommendations. Curiosity was inspired more for those individuals who have a larger capacity to experience curiosity. Over half of the users have changed their preferences after using LuckyFind, either discovering new areas, reinforcing their existing interests, or stopping following those they did not want anymore. The insights of the research will make researchers and practitioners rethink the objectives of today’s recommender systems as being more human-centered beyond algorithmic accuracy. 
    more » « less
  3. null (Ed.)
    Recently there has been a growing interest in fairness-aware recommender systems including fairness in providing consistent performance across different users or groups of users. A recommender system could be considered unfair if the recommendations do not fairly represent the tastes of a certain group of users while other groups receive recommendations that are consistent with their preferences. In this paper, we use a metric called miscalibration for measuring how a recommendation algorithm is responsive to users’ true preferences and we consider how various algorithms may result in different degrees of miscalibration for different users. In particular, we conjecture that popularity bias which is a well-known phenomenon in recommendation is one important factor leading to miscalibration in recommendation. Our experimental results using two real-world datasets show that there is a connection between how different user groups are affected by algorithmic popularity bias and their level of interest in popular items. Moreover, we show that the more a group is affected by the algorithmic popularity bias, the more their recommendations are miscalibrated. 
    more » « less
  4. User preferences are usually dynamic in real-world recommender systems, and a user’s historical behavior records may not be equally important when predicting his/her future interests. Existing recommendation algorithms – including both shallow and deep approaches – usually embed a user’s historical records into a single latent vector/representation, which may have lost the per item- or feature-level correlations between a user’s historical records and future interests. In this paper, we aim to express, store, and manipulate users’ historical records in a more explicit, dynamic, and effective manner. To do so, we introduce the memory mechanism to recommender systems. Specifically, we design a memory-augmented neural network (MANN) integrated with the insights of collaborative filtering for recommendation. By leveraging the external memory matrix in MANN, we store and update users’ historical records explicitly, which enhances the expressiveness of the model. We further adapt our framework to both item- and feature-level versions, and design the corresponding memory reading/writing operations according to the nature of personalized recommendation scenarios. Compared with state-of-the-art methods that consider users’ sequential behavior for recommendation, e.g., sequential recommenders with recurrent neural networks (RNN) or Markov chains, our method achieves significantly and consistently better performance on four real-world datasets. Moreover, experimental analyses show that our method is able to extract the intuitive patterns of how users’ future actions are affected by previous behaviors. 
    more » « less
  5. null (Ed.)
    Recommendation and ranking systems are known to suffer from popularity bias; the tendency of the algorithm to favor a few popular items while under-representing the majority of other items. Prior research has examined various approaches for mitigating popularity bias and enhancing the recommendation of long-tail, less popular, items. The effectiveness of these approaches is often assessed using different metrics to evaluate the extent to which over-concentration on popular items is reduced. However, not much attention has been given to the user-centered evaluation of this bias; how different users with different levels of interest towards popular items are affected by such algorithms. In this paper, we show the limitations of the existing metrics to evaluate popularity bias mitigation when we want to assess these algorithms from the users’ perspective and we propose a new metric that can address these limitations. In addition, we present an effective approach that mitigates popularity bias from the user-centered point of view. Finally, we investigate several state-of-the-art approaches proposed in recent years to mitigate popularity bias and evaluate their performances using the existing metrics and also from the users’ perspective. Our experimental results using two publicly-available datasets show that existing popularity bias mitigation techniques ignore the users’ tolerance towards popular items. Our proposed user-centered method can tackle popularity bias effectively for different users while also improving the existing metrics. 
    more » « less