Abstract The Community Earth System Model version 1 (CESM1) and version 2 (CESM2)'s abilities to simulate the impacts of Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) on South American precipitation and temperature have not been assessed, and how the AMV and PMV modulate each other's influences on South American climate is not well understood. Here we use observations, reanalyses, and CESM1 and CESM2 simulations from 1920 to 2015 to study those problems. The models can reproduce the observed precipitation and temperature responses to AMV well, but can only roughly reproduce such responses to PMV. The precipitation response over the South Atlantic convergence zone (SACZ) is better simulated by CESM2 compared to CESM1, which is associated with an improved horizontal moisture flux over this region. However, the models cannot accurately simulate the observed differences between the influences of Pacific interannual and multidecadal variability on South American precipitation and temperature. The impacts of AMV and PMV on South American precipitation are modulated by the other mode via changes in horizontal moisture flux over the SACZ and River Plate basin in summer, as well as changes in vertical motion over the equatorial regions in winter. Similarly, the impacts of AMV and PMV on South American temperature are also modulated by the other mode. Over water‐limited regions, such as northeastern Brazil and southern Argentina, the precipitation and temperature responses are anti‐correlated, possibly via surface evaporation. 
                        more » 
                        « less   
                    
                            
                            Physical Insights From the Multidecadal Prediction of North Atlantic Sea Surface Temperature Variability Using Explainable Neural Networks
                        
                    
    
            Abstract North Atlantic sea surface temperatures (NASST), particularly in the subpolar region, are among the most predictable in the world's oceans. However, the relative importance of atmospheric and oceanic controls on their variability at multidecadal timescales remain uncertain. Neural networks (NNs) are trained to examine the relative importance of oceanic and atmospheric predictors in predicting the NASST state in the Community Earth System Model 1 (CESM1). In the presence of external forcings, oceanic predictors outperform atmospheric predictors, persistence, and random chance baselines out to 25‐year leadtimes. Layer‐wise relevance propagation is used to unveil the sources of predictability, and reveal that NNs consistently rely upon the Gulf Stream‐North Atlantic Current region for accurate predictions. Additionally, CESM1‐trained NNs successfully predict the phasing of multidecadal variability in an observational data set, suggesting consistency in physical processes driving NASST variability between CESM1 and observations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2055236
- PAR ID:
- 10533056
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 24
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Water mass transformation (WMT) in the North Atlantic plays a key role in driving the Atlantic Meridional Overturning Circulation (AMOC) and its variability. Here, we analyze subpolar North Atlantic WMT in high‐ and low‐resolution versions of the Community Earth System Model version 1 (CESM1) and investigate whether differences in resolution and climatological WMT impact low‐frequency AMOC variability and the atmospheric response to this variability. We find that high‐resolution simulations reproduce the WMT found in a reanalysis‐forced high‐resolution ocean simulation more accurately than low‐resolution simulations. We also find that the low‐resolution simulations, including one forced with the same atmospheric reanalysis data, have larger biases in surface heat fluxes, sea‐surface temperatures, and salinities compared to the high‐resolution simulations. Despite these major climatological differences, the mechanisms of low‐frequency AMOC variability are similar in the high‐ and low‐resolution versions of CESM1. The Labrador Sea WMT plays a major role in driving AMOC variability, and a similar North Atlantic Oscillation‐like sea‐level pressure pattern leads AMOC changes. However, the high‐resolution simulation shows a pronounced atmospheric response to the AMOC variability not found in the low‐resolution version. The consistent role of Labrador Sea WMT in low‐frequency AMOC variability across high‐ and low‐resolution coupled simulations, including a simulation which accurately reproduces the WMT found in an atmospheric‐reanalysis‐forced high‐resolution ocean simulation, suggests that the mechanisms may be similar in nature.more » « less
- 
            Abstract Previous research suggests the extratropical atmospheric circulation responds to that sea‐surface temperature (SST) variability in the western North Pacific. However, the relative roles of oceanic and atmospheric processes in driving the SST anomalies that, in turn, seemingly influence the atmospheric circulation are unclear. Here, we exploit a simple stochastic climate model to subdivide the SST variability in the Kuroshio‐Oyashio Extension region into components forced by oceanic and atmospheric processes. We then probe the lead/lag relationships between the atmospheric circulation and both components of the SST variability. Importantly, only the oceanic‐forced SST variability is associated with robust atmospheric anomalies that lag the SSTs by 1 month. The results are consistent with the surface heat fluxes associated with atmospheric and oceanic‐forced components of the SST variability. Overall, the findings suggest that ocean dynamical processes in the western North Pacific play an important role in influencing the variability of the extratropical circulation.more » « less
- 
            Abstract The influence of El Niño–Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the sea surface temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean–atmospheric coupling, known as the Indo-western Pacific Ocean capacitor (IPOC) effect, although the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere–ocean model initialized from a multidecadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical northwestern Pacific, a warming patch in the tropical North Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.more » « less
- 
            Abstract Winter surface air temperature (Tas) over the Barents–Kara Seas (BKS) and other Arctic regions has experienced rapid warming since the late 1990s that has been linked to the concurring cooling over Eurasia, and these multidecadal trends are attributed partly to internal variability. However, how such variability is generated is unclear. Through analyses of observations and model simulations, we show that sea ice–air two-way interactions amplify multidecadal variability in sea-ice cover, sea surface temperatures (SST) and Tas from the North Atlantic to BKS, and the Atlantic Meridional Overturning Circulation (AMOC) mainly through variations in surface fluxes. When sea ice is fixed in flux calculations, multidecadal variations are reduced substantially (by 20–50%) not only in Arctic Tas, but also in North Atlantic SST and AMOC. The results suggest that sea ice–air interactions are crucial for multidecadal climate variability in both the Arctic and North Atlantic, similar to air-sea interactions for tropical climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    