skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Python Multiprocessing Approach for Fast Geostatistical Simulations of Subglacial Topography
Realistically rough stochastic realizations of subglacial bed topography are crucial for improving our understanding of basal processes and quantifying uncertainty in sea level rise projections with respect to topographic uncertainty. This can be achieved with sequential Gaussian simulation (SGS), which is used to generate multiple nonunique realizations of geological phenomena that sample the uncertainty space. However, SGS is very CPU intensive, with a computational complexity of O(NkNk3), where NN is the number of grid cells to simulate, and kk is the number of neighboring points used for conditioning. This complexity makes SGS prohibitively time-consuming to implement at ice sheet scales or fine resolutions. To reduce the time cost, we implement and test a multiprocess version of SGS using Python’s multiprocessing module. By parallelizing the calculation of the weight parameters used in SGS, we achieve a speedup of 9.5 running on 16 processors for an NN of 128,097. This speedup—as well as the speedup from using multiple processors—increases with NN. This speed improvement makes SGS viable for large-scale topography mapping and ensemble ice sheet modeling. Additionally, we have made our code repository and user tutorials publicly available (GitHub and Zenodo) so that others can use our multiprocess implementation of SGS on different datasets.  more » « less
Award ID(s):
2324092
PAR ID:
10533104
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Computing in Science & Engineering
Date Published:
Journal Name:
Computing in Science & Engineering
Volume:
25
Issue:
3
ISSN:
1521-9615
Page Range / eLocation ID:
42 to 49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Subglacial topography is an important feature in numerous ice-sheet analyses and can drive the routing of water at the bed. Bed topography is primarily measured with ice-penetrating radar. Significant gaps, however, remain in data coverage that require interpolation. Topographic interpolations are typically made with kriging, as well as with mass conservation, where ice flow dynamics are used to constrain bed geometry. However, these techniques generate bed topography that is unrealistically smooth at small scales, which biases subglacial water flowpath models and makes it difficult to rigorously quantify uncertainty in subglacial drainage patterns. To address this challenge, we adapt a geostatistical simulation method with probabilistic modeling to stochastically simulate bed topography such that the interpolated topography retains the spatial statistics of the ice-penetrating radar data. We use this method to simulate subglacial topography using mass conservation topography as a secondary constraint. We apply a water routing model to each of these realizations. Our results show that many of the flowpaths significantly change with each topographic realization, demonstrating that geostatistical simulation can be useful for assessing confidence in subglacial flowpaths. 
    more » « less
  2. When a continental sized ice sheet first formed on Antarctica across the Eocene-Oligocene boundary the bed topography was significantly different to the modern day bed. As the bed evolved due to the effects of glacial erosion, sedimentation, subsidence and tectonics, it is hypothesised that the ice sheet sensitivity to climate forcing also changed. This hypothesis has been tested in a number of recent ice sheet modelling studies, but these efforts have been limited by the use of idealised bed topography estimates. Here we explore the ice sheet sensitivity to evolving bed topography using a recently produced suite of palaeotopographies for the Eocene-Oligocene and Oligocene-Miocene transitions, the mid-Miocene climatic optimum, and the late Miocene to early Pliocene. Al- though we present results for all of these intervals, we are particularly interested in whether bed topography played a role in Antarctic ice sheet stabilisation following the mid-Miocene climatic optimum and the final descent into the icehouse. 
    more » « less
  3. Abstract A hierarchy of general circulation models (GCMs) is used to investigate the linearity of the response of the climate system to changes in Antarctic topography. Experiments were conducted with a GCM with either a slab ocean or fixed SSTs and sea ice, in which the West Antarctic ice sheet (WAIS) and coastal Antarctic topography were either lowered or raised in an idealized way. Additional experiments were conducted with a fully coupled GCM with topographic perturbations based on an ice-sheet model in which the WAIS collapses. The response over the continent is the same in all model configurations and is mostly linear. In contrast, the response has substantial nonlinear elements over the Southern Ocean that depend on the model configuration and are due to feedbacks with sea ice, ocean, and clouds. The atmosphere warms near the surface over much of the Southern Ocean and cools in the stratosphere over Antarctica, whether topography is raised or lowered. When topography is lowered, the Southern Ocean surface warming is due to strengthened southward atmospheric heat transport and associated enhanced storminess over the WAIS and the high latitudes of the Southern Ocean. When topography is raised, Southern Ocean warming is more limited and is associated with circulation anomalies. The response in the fully coupled experiments is generally consistent with the more idealized experiments, but the full-depth ocean warms throughout the water column whether topography is raised or lowered. These results indicate that ice sheet–climate system feedbacks differ depending on whether the Antarctic ice sheet is gaining or losing mass. Significance StatementThroughout Earth’s history, the Antarctic ice sheet was at times taller or shorter than it is today. The purpose of this study is to investigate how the atmosphere, sea ice, and ocean around Antarctica respond to changes in ice sheet height. We find that the response to lowering the ice sheet is not the opposite of the response to raising it, and that in either case the ocean surface near the continent warms. When the ice sheet is raised, the ocean warming is related to circulation changes; when the ice sheet is lowered, the ocean warming is from an increase in southward atmospheric heat transport. These results are important for understanding how the ice sheet height and local climate evolve together through time. 
    more » « less
  4. Abstract. Subglacial topography beneath the Greenland Ice Sheet is a fundamental control on its dynamics and response to changes in the climate system. Yet, it remains challenging to measure directly, and existing representations of the subglacial topography rely on a limited number of observations. Although the use of mass conservation and the development of BedMachine Greenland substantially improved the representation of the bed topography, this approach is limited to fast-flowing sectors and is less effective in regions with complex, alpine topography. As an alternative to traditional numerical methods, recent work has explored using Physics Informed Neural Networks (PINNs), constrained by only one physical law, to solve forward and inverse problems in ice sheet modeling. Building on this work, we assess three PINN frameworks constrained by distinct conservation laws, showing that PINNs informed with a single conservation law are not sufficient for regions with sparse measurements and complex topographies. To that end, we introduce a novel approach that involves coupling two conservation laws within a PINN framework to infer the subglacial topography and test this approach for three regions with distinct environments in Greenland. This PINN is trained with both the conservation of mass and an approximation of the conservation of momentum (the Shelfy-Stream Approximation), which allows us to simultaneously infer the ice thickness and basal shear stress using observations of ice velocities, surface elevation, and the apparent mass balance in a mixed inversion problem. We compare the predicted ice thickness to ground-truth ice-penetrating radar measurements of ice thickness, showing that the PINN informed with two conservation laws is capable of inferring ice thickness in sparsely surveyed regions. Furthermore, comparisons of predicted bed topographies with BedMachine Greenland show that this approach is capable of discovering new bed features in slower-moving regions and in regions of complex topography, highlighting its potential for better constraining the bed topography of the Greenland Ice Sheet. 
    more » « less
  5. Ancient glaciated landscapes reveal interactions among ice dynamics, bed composition, and preglacial river networks. Subglacial landscapes, revealed in regions of recent ice-sheet retreat, provide a window into ice-sheet dynamics and interactions with evolving subglacial topography. Here, we document landscape evolution beneath the southern Laurentide Ice Sheet of North America since the end of the Pliocene, 2.6 million years (Ma) ago, by reconstructing the isostatically adjusted preglacial surface and modern bedrock topography at 250 m horizontal resolution. We use flow routing to reconstruct drainage networks and river longitudinal profiles, revealing the pattern and extent of their glacially forced reorganization. The overall mean Quaternary (2.6 Ma ago to present) erosion rate is 27 m/Ma, rising within ice-streaming corridors to 35 m/Ma (and locally reaching 400 m/Ma) and falling to 22 m/Ma in non–ice-streaming regions. Our results suggest that subglacial erosion was sufficient to lower the southern Laurentide Ice Sheet into warmer environments, thereby enhancing ablation and reducing ice-sheet extent over time. 
    more » « less