skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: One for All: Simultaneous Metric and Preference Learning over Multiple Users
This paper investigates simultaneous preference and metric learning from a crowd of respondents. A set of items represented by d -dimensional feature vectors and paired comparisons of the form item i is preferable to item j '' made by each user is given. Our model jointly learns a distance metric that characterizes the crowd's general measure of item similarities along with a latent ideal point for each user reflecting their individual preferences. This model has the flexibility to capture individual preferences, while enjoying a metric learning sample cost that is amortized over the crowd. We first study this problem in a noiseless, continuous response setting (i.e., responses equal to differences of item distances) to understand the fundamental limits of learning. Next, we establish prediction error guarantees for noisy, binary measurements such as may be collected from human respondents, and show how the sample complexity improves when the underlying metric is low-rank. Finally, we establish recovery guarantees under assumptions on the response distribution. We demonstrate the performance of our model on both simulated data and on a dataset of color preference judgements across a large number of users.  more » « less
Award ID(s):
2023239
PAR ID:
10533130
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Advances in Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study interactive learning of LLM-based language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data. The inferred user preference descriptions are used to define prompts for generating responses in the future. This avoids fine-tuning the agent, which is costly, challenging to scale with the number of users, and may even degrade its performance on other tasks. Furthermore, learning descriptive preference improves interpretability, allowing the user to view and modify the learned preference. However, user preference can be complex, subtle, and vary based on context, making it challenging to learn. To address this, we propose a simple yet effective algorithm named CIPHER that leverages the LLM to infer the user preference for a given context based on user edits. In the future, CIPHER retrieves inferred preferences from the k-closest contexts in the history, and forms an aggregate preference for response generation. We introduce two interactive environments -- summarization and email writing, and use a GPT-4 simulated user for evaluation. On both tasks, CIPHER outperforms several baselines by achieving the lowest edit distance cost while only having a small overhead in LLM query cost. Our analysis reports that user preferences learned by CIPHER show significant similarity to the ground truth latent preferences. 
    more » « less
  2. This paper addresses the problem of preference learning, which aims to align robot behaviors through learning user specific preferences (e.g. "good pull-over location") from visual demonstrations. Despite its similarity to learning factual concepts (e.g. "red door"), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is a neuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs, facilitating inspection of individual parts for alignment, in a domain-specific language (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out of distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies. 
    more » « less
  3. This paper addresses the problem of preference learning, which aims to align robot behaviors through learning user-specific preferences (e.g. “good pull-over location”) from visual demonstrations. Despite its similarity to learning factualconcepts (e.g. “red door”), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is aneuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs – facilitating inspection of individual parts for alignment – in a domain-specificlanguage (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out-of-distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies. 
    more » « less
  4. This paper addresses the problem of preference learning, which aims to align robot behaviors through learning userspecific preferences (e.g. “good pull-over location”) from visual demonstrations. Despite its similarity to learning factual concepts (e.g. “red door”), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is a neuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs – facilitating inspection of individual parts for alignment – in a domain-specific language (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out-of-distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies. 
    more » « less
  5. null (Ed.)
    Collaborative bandit learning, i.e., bandit algorithms that utilize collaborative filtering techniques to improve sample efficiency in online interactive recommendation, has attracted much research attention as it enjoys the best of both worlds. However, all existing collaborative bandit learning solutions impose a stationary assumption about the environment, i.e., both user preferences and the dependency among users are assumed static over time. Unfortunately, this assumption hardly holds in practice due to users' ever-changing interests and dependency relations, which inevitably costs a recommender system sub-optimal performance in practice. In this work, we develop a collaborative dynamic bandit solution to handle a changing environment for recommendation. We explicitly model the underlying changes in both user preferences and their dependency relation as a stochastic process. Individual user's preference is modeled by a mixture of globally shared contextual bandit models with a Dirichlet process prior. Collaboration among users is thus achieved via Bayesian inference over the global bandit models. To balance exploitation and exploration during the interactions, Thompson sampling is used for both model selection and arm selection. Our solution is proved to maintain a standard $$\tilde O(\sqrt{T})$$ Bayesian regret in this challenging environment. Extensive empirical evaluations on both synthetic and real-world datasets further confirmed the necessity of modeling a changing environment and our algorithm's practical advantages against several state-of-the-art online learning solutions. 
    more » « less