skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into the Early Volcanic History of the Walvis Ridge recorded by Chemostratigraphy: Preliminary Data IODP Expedition 391 Site U1575
The Walvis Ridge system consists of a series of seamounts, ridges, and plateaus formed during the opening of the southern Atlantic Ocean since ~135 Ma. International Ocean Discovery Program Expeditions (IODP) 391 and 397T drilled six sites along the length of the hotspot track to understand the magmatic processes associated with evolving plume-ridge systems. The oldest drilled segment of the ridge system – Frio Ridge – extends from the Etendeka flood basalts in Namibia westward into the Atlantic Ocean. Site U1575 is on the Frio Ridge and is the closest site to the African continent. The site drilled 118.9 m of igneous basement with 70.7 m (59.5%) of recovery. The recovered core consisted of alternating sequences of submarine pillow lavas and sheet flows, some of which were massive (up to 21 m thick). Preliminary major and trace element data demonstrate the basaltic lavas are fractionated (MgO = 4.8-6.4 wt. %) with modest TiO2 contents (1.5-2.7 wt. %). The upper 52 m of igneous section (214-267 mbsf) are geochemically consistent throughout the various eruptive styles. However, an abrupt compositional shift to lavas with lower incompatible element abundances (TiO2, Zr, Sr, Nb, La, etc.) from 274-311 mbsf demonstrates a clear shift in magmatic source contributions. Below this, the lavas return to compositions similar to the upper portion of the hole. Shipboard natural gamma radiation (NGR) and magnetic susceptibility (MS) measurements correlate with mineralogical and compositional changes. Specifically, decreases in NGR correlate well with decreases in K2O, Sr, Y, and Zr. MS is positively correlated with zones containing olivine. Trace element discrimination plots demonstrate a dual character: Ti-V relationships are strongly MORB-like while Th/Nb suggests the lavas have both MORB and plume characteristics, consistent with the formation of the Frio Ridge through plume-ridge interaction. Elevated Zr/Nb and Y/Nb values are also consistent with a hybrid source. The composition of this core contrasts sharply with cores recovered from the younger Guyot Province to the southwest. Sites U1578 and U1585 have episodes of higher TiO2 contents (>3.5 wt. %) with trace element signatures (e.g. low Zr/Nb & Y/Nb) indicative of a pronounced plume component, consistent with an intraplate setting for the formation of the Guyot Province.  more » « less
Award ID(s):
2317550
PAR ID:
10533172
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Location:
https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1322656
Sponsoring Org:
National Science Foundation
More Like this
  1. Walvis Ridge, a time-transgressive series of ridges, oceanic plateau, seamounts, guyots, and two active volcanic islands extending SW from the coast of Namibia, records the evolution of the Tristan-Gough-Walvis Ridge (TGW) hotspot and the opening of the South Atlantic since ~135 Ma. However, much of our current understanding of the interplay between geodynamic cycles, tectonism, and mantle plume generation along the TGW hotspot track is based upon a limited number of dredged rock samples. Here, we present preliminary whole rock major and trace element geochemistry and shipboard physical properties data from Site U1578, located on a Center track guyot in the Guyot Province. The 302 m of igneous section recovered from Site U1578 provides an extraordinary, > 1 Myr record of plume magmatism, submarine volcanism, and geochemical evolution. The chemical stratigraphy of core from Site U1578 provides important new perspectives on submarine volcanism, magma flux, and the transition between continental tholeiitic basalts of the Etendeka flood basalt province and alkaline lavas of the Guyot Province. Core from U1578 records the longest sequence of pillow, sheet, and massive lava flows in the TGW system. Eleven (of 12 total) lithologic flow units record shifts in major and trace element geochemistry and episodic cycles of recharge and fractional crystallization. Preliminary XRF and ICP-MS analyses indicate a dominantly pyroxenite source and document the shift between high TiO2 (>3.5 wt. %) to low TiO2 (<3.5 wt. %) alkaline basalts. Site U1578 core samples from the Guyot Province have lower Nb/Y and Zr/Nb compared to Walvis Ridge sites drilled closer to the African continent (Frio Ridge at Site U1575 and Valdivia Bank at Sites U1576 and U1577), coincident with a transition from plume-ridge interaction to intraplate magmatism with time. This shift resulted in a thicker lithospheric lid and thus deeper and lower degrees of melting, preferentially sampling the enriched plume component. Additionally, shipboard natural gamma radiation (NGR) and magnetic susceptibility (MS) measurements correlate well with observed lithologic characteristics and new ICP-MS and XRF analyses. A 100 m zone of high NGR values neatly overlaps high K2O, and olivine cumulate layers correlate to higher MS and higher concentrations of Cr and Ni. 
    more » « less
  2. The Tristan-Gough plume system forms age-progressive volcanism on the African plate over ~130 Ma, extending to the active islands of Gough and Tristan-Inaccessible. Walvis Ridge forms massive ridges and plateaus that split into three narrower ridges of the Guyot Province. International Ocean Discovery Program (IODP) Expedition 391 Site U1577 sampled the extreme eastern flank of Valdivia Bank, an oceanic plateau within the Walvis Ridge. Here we report major and trace element data as well as Sr-Nd-Hf-Pb isotopic compositions of IODP 391 Site U1577. Three massive basalt flow subunits were drilled, separated only by thin chilled margins. The lack of any sediment or significant alteration at the contacts, and their consistent paleomagnetic inclination, all suggest that these flows were erupted in relatively quick succession. Accordingly, geochemical variations are minimal. Samples from Site U1577 form tight clusters that overlap in major and trace elements with previous dredge and Deep Sea Drilling Project (DSDP) drill site samples from the Walvis Ridge. All are less enriched in incompatible trace elements, i.e., Ti, K, P, Sr and Zr, relative to samples from Tristan and Gough islands and the Guyot province, consistent with Walvis Ridge samples formed by higher degrees of partial melting. In contrast to Walvis Ridge dredge samples, Site U1577 samples are shifted slightly towards higher 176Hf/177Hf and lower 208Pb/204Pb isotopic compositions, while overlapping in 207Pb/204Pb vs. 206Pb/204Pb as well as Sr-Nd isotopic compositions. Such elevated 176Hf/177Hf combined with lower 208Pb/204Pb isotopic compositions have otherwise only been reported from the Eastern Rio Grande Rise formed in near-/on-ridge position. Magnetic lineations imply formation of Valdivia Bank by seafloor spreading as well. Site U1577 samples provide geochemical support for this hypothesis whereas dredge samples lack signatures of plume-ridge interaction. Also, with Site U1577 on the eastern flank, it is farthest from the mid-Atlantic Ridge at the time of formation compared to the location of near-by dredge samples. With major and trace element data integrated on the same samples as isotopic compositions, we will address the contrasting possibilities of an integral depleted plume component versus evidence for plume-ridge interaction. 
    more » « less
  3. Abstract The basalts of the 2021 Fagradalsfjall eruption were the first erupted on the Reykjanes Peninsula in 781 years and offer a unique opportunity to determine the composition of the mantle underlying Iceland, in particular its oxygen isotope composition (δ18O values). The basalts show compositional variations in Zr/Y, Nb/Zr and Nb/Y values that span roughly half of the previously described range for Icelandic basaltic magmas and signal involvement of Icelandic plume (OIB) and Enriched Mid-Ocean Ridge Basalt (EMORB) in magma genesis. Here we show that Fagradalsfjall δ18O values are invariable (mean δ18O = 5.4 ± 0.3‰ 2 SD,N = 47) and indistinguishable from “normal” upper mantle, in contrast to significantly lower δ18O values reported for erupted materials elsewhere in Iceland (e.g., the 2014–2015 eruption at Holuhraun, Central Iceland). Thus, despite differing trace element characteristics, the melts that supplied the Fagradalsfjall eruption show no evidence for18O-depleted mantle or interaction with low-δ18O crust and may therefore represent a useful mantle reference value in this part of the Icelandic plume system. 
    more » « less
  4. Hotspot tracks (quasilinear chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are simple chains of seamounts that are often compared to chains of pearls, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts, and areas of what appear to be randomly dispersed seamounts. The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. The older ridge is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamount (guyot) province, to gather igneous rocks to better understand the formation of track edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard outbreak of the coronavirus disease 2019 (COVID-19) virus, Expedition 391 proceeded to drill at four of the proposed sites: three sites on the eastern Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the island of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to the island of Gough). One hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The latter comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first hole was terminated because a bit jammed shortly after penetrating igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Paleocene to Late Cretaceous (Campanian). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement yielded 11 submarine lava units ranging from pillows to massive flows, which have compositions varying from tholeiitic basalt to basaltic andesite, the first occurrence of this composition recovered from the TGW track. These units are separated by seven sedimentary chalk units that range in thickness from 0.1 to 11.6 m, implying a long-term interplay of sedimentation and lava eruptions. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154 m thick sedimentary section, the bottom ~108 m of which is Maastrichtian–Campanian (possibly Santonian) chalk with vitric tephra layers. Igneous basement coring progressed only 39.1 m below the sediment-basalt contact, recovering three massive submarine tholeiite basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that their volcanic basements formed just before the end of the Cretaceous Normal Superchron and during Chron 33r, shortly afterward, respectively. Biostratigraphic and paleomagnetic data suggest an east–west age progression across Valdivia Bank, becoming younger westward. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk, Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine, and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging in thickness from 0.46 to 10.19 m. Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Abundant glass from pillow lava margins was recovered at Sites U1575, U1576, and U1578. Although the igneous penetration was only two-thirds of the planned amount, drilling during Expedition 391 obtained samples that clearly will lead to a deeper understanding of the evolution of the Tristan-Gough hotspot and its track. Relatively fresh basalts with good recovery will provide ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study. 
    more » « less
  5. Osmium isotope and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance data are reported for picrites and basalts from the ∼132 Ma Etendeka large igneous province (LIP) and the ∼60 Ma North Atlantic Igneous Province (NAIP). Picrite dykes of the Etendeka LIP have HSE abundances and 187Os/188Os (0.1276 to 0.1323; γOsi = -0.5 to +3.1) consistent with derivation from high-degree partial melting (>20 %) of a peridotite source with chondritic to modestly supra-chondritic long-term Re/Os. High-3He/4He NAIP picrites from West Greenland represent large-degree partial melts with similarly elevated HSE abundances and 187Os/188Os (0.1273 to 0.1332; γOsi = -0.2 to +3.9). Broadly chondritic Os isotope ratios have also been reported for the ∼132 Ma Paraná LIP and the ∼201 Ma Central Atlantic Magmatic Province (CAMP). Consequently, LIP associated with Atlantic Ocean opening derive, at least in part, from partial melting of peridotite mantle distinct from the depleted mantle associated with mid-ocean ridge basalt volcanism. Modern locations with high-3He/4He (>25RA) include ocean island basalts (OIB) from Ofu (Samoa), Loihi (Hawaii) and Fernandina (Galapagos) in the Pacific Ocean, and from Iceland, which is considered the modern manifestation of NAIP magmatism. Unlike Etendeka and NAIP picrites, these modern OIB have Sr-Nd-Pb-Os isotopes consistent with contributions of recycled oceanic or continental crust. The lower degree of partial melting responsible for modern high-3He/4He OIB gives higher proportions of fusible recycled crustal components to the magmas, with radiogenic 187Os/188Os and low-3He/4He. The high-3He/4He, incompatible trace element-depleted mantle component in both LIP and OIB therefore also has long-term chondritic Re/Os, which is consistent with an early-formed reservoir that experienced late accretion. Atlantic LIP (CAMP; Paraná-Etendeka; NAIP) provide geochemical evidence for a prominent role for mantle plume contributions during continental break-up and formation of the Atlantic Ocean, a feature hitherto unrecognized in other ocean basin-forming events. 
    more » « less