Science skepticism challenges the trustworthiness of scientific knowledge. Researchers suggest that school science curricula should emphasize the epistemic practices realworld scientists use to generate claims, such as actively seeking contradictory evidence for explanatory models and comparing findings with peers. However, empirical evidence supporting the use of epistemic practices, and its potential impact on students’ trustworthiness of science remains limited. This study examines four ninth-grade biology students who designed experiments to understand a fictional viral outbreak using agent-based simulation data. They iteratively refined their designs and discussed with peers. Analysis of student worksheets and discussions reveals that students used three epistemic practices: considering multiple explanations, systematically evaluating evidence, and comparing findings with similar experiments. However, they struggled to revise their initial models when presented with conflicting evidence by their peers. These findings offer insights into how students engage with epistemic practices and their perceptions of science's trustworthiness.
more »
« less
Seven design principles for teaching complex socioscientific issues: the design of a complex systems agent-based disease epidemic model and the application of epistemic practices in high school biology
Historic challenges in the biological sciences, such as the spread of disease and climate change, have created an unprecedented need for humans to engage with scientific information to address societal problems. However, understanding these socioscientific issues (SSI) can be hard due to the difficulty of comprehending their complex structures and behaviors, the intentional propagation of misinformation, and an insufficient understanding of the epistemic practices that scientists use to develop relevant knowledge. Education researchers have highlighted additional problems in the way science is taught with a focus mainly on concepts rather than practices, competing curricular mandates, and professional development activities that do not provide usable knowledge. The research reported here follows more than a decade of work using agent-based computational models to support the comprehension and analysis of complex biological systems. Our recent work has aimed to build tools and strategies to support students in decision making about complex SSIs. In this paper, we discuss 7 design challenges and principles that underpin this recent focus. Specifically, we combine agent-based modeling with strategies to develop students’ epistemic performance in high school biology curricula. We then provide a detailed case study of how the 7 design principles were used to create a disease epidemic model and unit anchored in the biology topic of the nature of science. Our goal is to offer a comprehensive set of research-derived design principles that can bridge classroom experiences in biology to applications of SSIs.
more »
« less
- Award ID(s):
- 2009803
- PAR ID:
- 10533177
- Editor(s):
- Long, Tammy M
- Publisher / Repository:
- Frontiers of Education
- Date Published:
- Journal Name:
- Frontiers in education
- Volume:
- 8
- ISSN:
- 2504-284X
- Page Range / eLocation ID:
- 1-16
- Subject(s) / Keyword(s):
- complex systems, socioscientifc issues, post-truth, science epistemic practices, agent-based modeling, biology, teacher professional development, K-12 curriculum
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Teaching science inquiry practices, especially the more contemporary ones, such as computational thinking practices, requires designing newer learning environments and appropriate pedagogical scaffolds. Using such learning environments, when students construct knowledge about disciplinary ideas using inquiry practices, it is important that they make connections between the two. We call such connections epistemic connections, which are about constructing knowledge using science inquiry practices. In this paper, we discuss the design of a computational thinking integrated biology unit as an Emergent Systems Microworlds (ESM) based curriculum. Using Epistemic Network Analysis, we investigate how the design of unit support students’ learning through making epistemic connections. We also analyze the teacher’s pedagogical moves to scaffold making such connections. This work implies that to support students’ epistemic connections between science inquiry practices and disciplinary ideas, it is critical to design restructured learning environments like ESMs, aligned curricular activities and provide appropriate pedagogical scaffolds.more » « less
-
Synopsis Bioinspired design (BID) is an interdisciplinary research field that can lead to innovations to solve technical problems. There have been many attempts to develop a framework to de-silo engineering and biology and implement processes to enable BID. In January of 2022, we organized a symposium at the 2022 Society of Integrative and Comparative Biology Annual Meeting to bring together educators and practitioners of BID. The symposium aimed to (a) consolidate best practices in teaching bioinspiration, (b) create and sustain effective multidisciplinary teams, (c) summarize best approaches to conduct problem-based or solution-driven fundamental research, and (d) bring BID innovations to market. During the symposium, several themes emerged. Here we highlight three critical themes that need to be addressed for BID to become a truly interdisciplinary strategy that benefits all stakeholders and results in innovation. First, there is a need for a usable methodology that leads to proper abstraction of biological principles for engineering design. Second, the utilization of engineering models to test biological hypotheses is essential for the continued engagement of biologists in BID. Third, there is a necessity of proven team-science strategies that will lead to successful collaborations between engineers and biologists. Accompanying this introduction is a variety of perspectives and research articles highlighting best practices in BID research and product development and guides that can highlight the challenges and facilitate interdisciplinary collaborations in the field of BID.more » « less
-
In the current “post-truth” era, there is a growing need to promote apt epistemic practices in science education. In this study, we investigated two high-school biology students’ epistemic practices during a modeling unit and appraised them for aptness using the Apt-AIR framework. Additionally, we analyzed their responses to a post-implementation focus group interview, designed to elicit their metacognition regarding epistemic practices, as they answered probing questions about practices within the curriculum and reflected on video clips of other students engaging with the units. We document the epistemic practices that students engage in during a modeling unit and evaluate the extent to which they are apt. Findings suggest a disassociation between students’ cognitive engagement in modeling practices and their metacognitive understanding.more » « less
-
Professional engineering demands more than the ability to proficiently carry out engineering calculations. Engineers need to approach problems with a holistic view, make decisions based on evidence, collaborate effectively in teams, and learn from setbacks. Laboratory work plays a crucial role in shaping the professional development of university engineering students, as it enables them to cultivate these essential practices. A successful laboratory task design should provide students opportunities to develop these practices but also needs to adhere to the constraints of the educational environment. In this project, we explore how both virtual (simulation-based) and physical (hands-on) laboratories, based on the same real-world engineering process, prepare students for their future careers. Specifically, we seek to determine whether the virtual and physical laboratory modes foster different yet complementary epistemic practices. Epistemic practices refer to the ways in which group members propose, communicate, justify, assess, and validate knowledge claims in a socially organized and interactionally accomplished manner. To accomplish these objectives, we are conducting a microgenetic analysis of student teams engaging in both the virtual and physical versions of the same laboratory exercise, the Jar Test for Drinking Water Treatment. Jar testing is a standard laboratory procedure used by design engineers and water treatment plant operators to optimize the physical and chemical conditions for the effective removal of particulate contaminants from water through coagulation, flocculation, and settling. The central hypothesis guiding this research is that physical laboratories emphasize social and material epistemic practices, while virtual laboratories highlight social and conceptual epistemic practices. The goal is to gain transferable knowledge about how the laboratory format and instructional design influence students' engagement in epistemic practices. To date we have developed physical and virtual versions of the Jar Test laboratory, each built around the affordances of their respective modes. We have completed two rounds of data collection resulting in data from 21 students (7 groups of 3). The primary data sources have included video recordings and researcher observations of the teams during the laboratory work, semi-structured stimulated recall interviews with students and laboratory instructors, and student work products. Using discourse analysis methods within a sociocultural framework, we are addressing the following research questions: 1. In what ways and to what extent does conducting an experiment in a physical mode to develop a process recommendation influence students’ engineering epistemic practices? 2. In what ways and to what extent does conducting an experiment in a virtual mode to develop a process recommendation influence students’ engineering epistemic practices? 3. How do students in each laboratory mode respond to being “stuck”? Do students’ views on the iterative nature of science/engineering and their tolerance for mistakes depend on the instructional design afforded by the laboratory mode? While this study focuses on a process specific to environmental engineering, its findings have the potential to positively impact teaching and learning practices across all engineering and science disciplines that rely on laboratory investigations in their curriculum.more » « less