Abstract Subgrid processes in global climate models are represented by parameterizations which are a major source of uncertainties in simulations of climate. In recent years, it has been suggested that machine‐learning (ML) parameterizations based on high‐resolution model output data could be superior to traditional parameterizations. Currently, both traditional and ML parameterizations of subgrid processes in the atmosphere are based on a single‐column approach, which only use information from single atmospheric columns. However, single‐column parameterizations might not be ideal since certain atmospheric phenomena, such as organized convective systems, can cross multiple grid boxes and involve slantwise circulations that are not purely vertical. Here we train neural networks (NNs) using non‐local inputs spanning over 3 × 3 columns of inputs. We find that including the non‐local inputs improves the offline prediction of a range of subgrid processes. The improvement is especially notable for subgrid momentum transport and for atmospheric conditions associated with mid‐latitude fronts and convective instability. Using an interpretability method, we find that the NN improvements partly rely on using the horizontal wind divergence, and we further show that including the divergence or vertical velocity as a separate input substantially improves offline performance. However, non‐local winds continue to be useful inputs for parameterizating subgrid momentum transport even when the vertical velocity is included as an input. Overall, our results imply that the use of non‐local variables and the vertical velocity as inputs could improve the performance of ML parameterizations, and the use of these inputs should be tested in online simulations in future work.
more »
« less
Uncertainty Quantification of a Machine Learning Subgrid‐Scale Parameterization for Atmospheric Gravity Waves
Abstract Subgrid‐scale processes, such as atmospheric gravity waves (GWs), play a pivotal role in shaping the Earth's climate but cannot be explicitly resolved in climate models due to limitations on resolution. Instead, subgrid‐scale parameterizations are used to capture their effects. Recently, machine learning (ML) has emerged as a promising approach to learn parameterizations. In this study, we explore uncertainties associated with a ML parameterization for atmospheric GWs. Focusing on the uncertainties in the training process (parametric uncertainty), we use an ensemble of neural networks to emulate an existing GW parameterization. We estimate both offline uncertainties in raw NN output and online uncertainties in climate model output, after the neural networks are coupled. We find that online parametric uncertainty contributes a significant source of uncertainty in climate model output that must be considered when introducing NN parameterizations. This uncertainty quantification provides valuable insights into the reliability and robustness of ML‐based GW parameterizations, thus advancing our understanding of their potential applications in climate modeling.
more »
« less
- Award ID(s):
- 2004492
- PAR ID:
- 10533193
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 16
- Issue:
- 7
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A promising approach to improve climate‐model simulations is to replace traditional subgrid parameterizations based on simplified physical models by machine learning algorithms that are data‐driven. However, neural networks (NNs) often lead to instabilities and climate drift when coupled to an atmospheric model. Here, we learn an NN parameterization from a high‐resolution atmospheric simulation in an idealized domain by accurately calculating subgrid terms through coarse graining. The NN parameterization has a structure that ensures physical constraints are respected, such as by predicting subgrid fluxes instead of tendencies. The NN parameterization leads to stable simulations that replicate the climate of the high‐resolution simulation with similar accuracy to a successful random‐forest parameterization while needing far less memory. We find that the simulations are stable for different horizontal resolutions and a variety of NN architectures, and that an NN with substantially reduced numerical precision could decrease computational costs without affecting the quality of simulations.more » « less
-
Abstract Neural networks (NNs) are increasingly used for data‐driven subgrid‐scale parameterizations in weather and climate models. While NNs are powerful tools for learning complex non‐linear relationships from data, there are several challenges in using them for parameterizations. Three of these challenges are (a) data imbalance related to learning rare, often large‐amplitude, samples; (b) uncertainty quantification (UQ) of the predictions to provide an accuracy indicator; and (c) generalization to other climates, for example, those with different radiative forcings. Here, we examine the performance of methods for addressing these challenges using NN‐based emulators of the Whole Atmosphere Community Climate Model (WACCM) physics‐based gravity wave (GW) parameterizations as a test case. WACCM has complex, state‐of‐the‐art parameterizations for orography‐, convection‐, and front‐driven GWs. Convection‐ and orography‐driven GWs have significant data imbalance due to the absence of convection or orography in most grid points. We address data imbalance using resampling and/or weighted loss functions, enabling the successful emulation of parameterizations for all three sources. We demonstrate that three UQ methods (Bayesian NNs, variational auto‐encoders, and dropouts) provide ensemble spreads that correspond to accuracy during testing, offering criteria for identifying when an NN gives inaccurate predictions. Finally, we show that the accuracy of these NNs decreases for a warmer climate (4 × CO2). However, their performance is significantly improved by applying transfer learning, for example, re‐training only one layer using ∼1% new data from the warmer climate. The findings of this study offer insights for developing reliable and generalizable data‐driven parameterizations for various processes, including (but not limited to) GWs.more » « less
-
Abstract There are different strategies for training neural networks (NNs) as subgrid‐scale parameterizations. Here, we use a 1D model of the quasi‐biennial oscillation (QBO) and gravity wave (GW) parameterizations as testbeds. A 12‐layer convolutional NN that predicts GW forcings for given wind profiles, when trained offline in abig‐dataregime (100‐year), produces realistic QBOs once coupled to the 1D model. In contrast, offline training of this NN in asmall‐dataregime (18‐month) yields unrealistic QBOs. However, online re‐training of just two layers of this NN using ensemble Kalman inversion and only time‐averaged QBO statistics leads to parameterizations that yield realistic QBOs. Fourier analysis of these three NNs' kernels suggests why/how re‐training works and reveals that these NNs primarily learn low‐pass, high‐pass, and a combination of band‐pass filters, potentially related to the local and non‐local dynamics in GW propagation and dissipation. These findings/strategies generally apply to data‐driven parameterizations of other climate processes.more » « less
-
Abstract Atmospheric gravity waves (GWs) span a broad range of length scales. As a result, the un‐resolved and under‐resolved GWs have to be represented using a sub‐grid scale (SGS) parameterization in general circulation models (GCMs). In recent years, machine learning (ML) techniques have emerged as novel methods for SGS modeling of climate processes. In the widely used approach of supervised (offline) learning, the true representation of the SGS terms have to be properly extracted from high‐fidelity data (e.g., GW‐resolving simulations). However, this is a non‐trivial task, and the quality of the ML‐based parameterization significantly hinges on the quality of these SGS terms. Here, we compare three methods to extract 3D GW fluxes and the resulting drag (Gravity Wave Drag [GWD]) from high‐resolution simulations: Helmholtz decomposition, and spatial filtering to compute the Reynolds stress and the full SGS stress. In addition to previous studies that focused only on vertical fluxes by GWs, we also quantify the SGS GWD due to lateral momentum fluxes. We build and utilize a library of tropical high‐resolution (Δx = 3 km) simulations using weather research and forecasting model. Results show that the SGS lateral momentum fluxes could have a significant contribution to the total GWD. Moreover, when estimating GWD due to lateral effects, interactions between the SGS and the resolved large‐scale flow need to be considered. The sensitivity of the results to different filter type and length scale (dependent on GCM resolution) is also explored to inform the scale‐awareness in the development of data‐driven parameterizations.more » « less
An official website of the United States government
