skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An early giant planet instability recorded in asteroidal meteorites
Abstract Giant planet migration appears widespread among planetary systems in our Galaxy. However, the timescales of this process, which reflect the underlying dynamical mechanisms, are not well constrained, even within the Solar System. As planetary migration scatters smaller bodies onto intersecting orbits, it would have resulted in an epoch of enhanced bombardment in the Solar System’s asteroid belt. Here, to accurately and precisely quantify the timescales of migration, we interrogate thermochronologic data from asteroidal meteorites, which record the thermal imprint of energetic collisions. We present a database of40K–40Ar system ages from chondrite meteorites and evaluate it with an asteroid-scale thermal code coupled to a Markov chain Monte Carlo inversion. Simulations require bombardment to reproduce the observed age distribution and identify a bombardment event beginning$$11.{3}_{-6.6}^{+9.5}\, {\mathrm{Myr}}$$ 11 . 3 6.6 + 9.5 Myr after the Sun formed (50% credible interval). Our results associate a giant planet instability in our Solar System with the dissipation of the gaseous protoplanetary disk.  more » « less
Award ID(s):
2102591
PAR ID:
10533270
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Astronomy
Volume:
8
Issue:
10
ISSN:
2397-3366
Format(s):
Medium: X Size: p. 1264-1276
Size(s):
p. 1264-1276
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present statistical results from the Epoch of Giant Planet Migration RV planet search program. This survey was designed to measure the occurrence rate of giant planets interior to the water ice line of young Sun-like stars, compare this to the prevalence of giant planets at older ages, and provide constraints on the timescale and dominant inward migration mechanism of giant planets. Our final sample amounts to 85 single young (20–200 Myr) G and K dwarfs that we target across a 4 yr time baseline with the near-infrared Habitable-zone Planet Finder spectrograph at McDonald Observatory’s Hobby-Eberly Telescope. As part of this survey, we discovered the young hot Jupiter HS Psc b. We characterize survey detection completeness with realistic injection-recovery tests and measure an occurrence rate of 1 . 9 1.4 + 2.6 % for intermediate-age giant planets ( 0.3 M J < m sin i < 13 M J ) within 2.5 au. This is lower than the field age occurrence rate for the same planet masses and separations and favors an increase in the prevalence of giant planets over time from ∼100 Myr to several Gyr, although our results cannot rule out a constant rate. A decaying planet occurrence rate is, however, strongly excluded. This suggests that giant planets located inside the water ice line originate from a combination of in situ formation or early migration coupled with longer-term inward scattering. The completeness-corrected prevalence of young hot Jupiters in our sample is 1 . 5 1.1 + 2.2 % —similar to the rate for field stars—and the 95% upper limit for young brown dwarfs within 5000 days is <3.6% . 
    more » « less
  2. Abstract We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.80 0.15 + 0.17 g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of 135 18 + 17 M (0.42 0.06 + 0.05 M Jup ). It has an orbital period of 3.792622 0.000010 + 0.000010 days and an orbital eccentricity of 0.06 0.04 + 0.07 . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats. 
    more » « less
  3. Abstract We report the discovery of a hot Jupiter candidate orbiting HS Psc, a K7 (≈0.7M) member of the ≈130 Myr AB Doradus moving group. Using radial velocities over 4 yr from the Habitable-zone Planet Finder spectrograph at the Hobby–Eberly Telescope, we find a periodic signal of P b = 3.986 0.003 + 0.044 days. A joint Keplerian and Gaussian process stellar activity model fit to the radial velocities yields a minimum mass of m p sin i = 1.5 0.4 + 0.6 MJup. The stellar rotation period is well constrained by the Transiting Exoplanet Survey Satellite light curve (Prot= 1.086 ± 0.003 days) and is not an integer harmonic nor alias of the orbital period, supporting the planetary nature of the observed periodicity. HS Psc b joins a small population of young, close-in giant planet candidates with robust age and mass constraints and demonstrates that giant planets can either migrate to their close-in orbital separations by 130 Myr or form in situ. Given its membership in a young moving group, HS Psc represents an excellent target for follow-up observations to characterize this young hot Jupiter further, refine its orbital properties, and search for additional planets in the system. 
    more » « less
  4. Abstract The current studies of microlensing planets are limited by small number statistics. Follow-up observations of high-magnification microlensing events can efficiently form a statistical planetary sample. Since 2020, the Korea Microlensing Telescope Network (KMTNet) and the Las Cumbres Observatory (LCO) global network have been conducting a follow-up program for high-magnification KMTNet events. Here, we report the detection and analysis of a microlensing planetary event, KMT-2023-BLG-1431, for which the subtle (0.05 mag) and short-lived (5 hr) planetary signature was characterized by the follow-up from KMTNet and LCO. A binary-lens single-source (2L1S) analysis reveals a planet/host mass ratio ofq= (0.72 ± 0.07) × 10−4, and the single-lens binary-source (1L2S) model is excluded by Δχ2= 80. A Bayesian analysis using a Galactic model yields estimates of the host star mass of M host = 0.57 0.29 + 0.33 M , the planetary mass of M planet = 13.5 6.8 + 8.1 M , and the lens distance of D L = 6.9 1.7 + 0.8 kpc. The projected planet-host separation of a = 2.3 0.5 + 0.5 au or a = 3.2 0.8 + 0.7 au, subject to the close/wide degeneracy. We also find that without the follow-up data, the survey-only data cannot break the degeneracy of central/resonant caustics and the degeneracy of 2L1S/1L2S models, showing the importance of follow-up observations for current microlensing surveys. 
    more » « less
  5. A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ B s 0 D s K ± decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ A f Γ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ A f ¯ Γ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ S f ¯ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ B s 0 mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ γ = 81 11 + 12
    more » « less