We present a Bayesian framework for joint and coherent analyses of multimessenger binary neutron star signals. The method, implemented in our bajes infrastructure, incorporates a joint likelihood for multiple datasets, support for various semi-analytical kilonova models and numerical-relativity (NR) informed relations for the mass ejecta, as well as a technique to include and marginalize over modeling uncertainties. As a first application, we analyze the gravitational-wave GW170817 and the kilonova AT2017gfo data. These results are then combined with the most recent X-ray pulsars analyses of PSR J0030+0451 and PSR J0740+6620 to obtain EOS constraints.Various constraints on the mass-radius diagram and neutron star properties are then obtained by resampling over a set of ten million parametrized EOS built under minimal assumptions. We find that a joint and coherent approach improves the inference of the extrinsic parameters (distance) and, among the instrinc parameters, the mass ratio. The inclusion of NR informed relations strongly improves over the case of using an agnostic prior on the intrinsic parameters. Comparing Bayes factors, we find that the two observations are better explained by the common source hypothesis only by assuming NR-informed relations. These relations break some of the degeneracies in the employed kN models. The EOS inference folding-in PSR J0952-0607 minimum-maximum mass, PSR J0030+0451 and PSR J0740+6620 data constrains, among other quantities, the neutron star radius to R1.4=12.30−0.56+0.81R1.4=12.30−0.56+0.81 km (R1.4=13.20−0.90+0.91R1.4=13.20−0.90+0.91 km) and the maximum mass to Mmax=2.28−0.17+0.25 M⊙Mmax=2.28−0.17+0.25 M⊙ (Mmax=2.32−0.19+0.30 M⊙Mmax=2.32−0.19+0.30 M⊙) where the ST+PDT (PDT-U) analysis of Vinciguerra et a (2023) for PSR J0030+0451 is employed. Hence, the systematics on PSR J0030+0451 data reduction currently dominate the mass-radius diagram constraints.
more »
« less
Radio Polarization of Millisecond Pulsars with Multipolar Magnetic Fields
NICER has observed a few millisecond pulsars where the geometry of the X-ray-emitting hotspots on the neutron star have been analyzed in order to constrain the mass and radius from X-ray light-curve modeling. One example, PSR J0030 + 0451, has been shown to possibly have significant multipolar magnetic fields at the stellar surface. Using force-free simulations of the magnetosphere structure, it has been shown that the radio, X-ray, andγ-ray light curves can be modeled simultaneously with an appropriate field configuration. An even more stringent test is to compare predictions of the force-free magnetosphere model with observations of radio polarization. This paper attempts to reproduce the radio polarization of PSR J0030 + 0451 using a force-free magnetospheric solution. As a result of our modeling, we can reproduce certain features of the polarization well.
more »
« less
- PAR ID:
- 10533286
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 965
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 140
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Over the past decade, an abundance of information from neutron-star observations, nuclear experiments and theory has transformed our efforts to elucidate the properties of dense matter. However, at high densities relevant to the cores of neutron stars, substantial uncertainty about the dense matter equation of state (EoS) remains. In this work, we present a semiparametric equation of state framework aimed at better integrating knowledge across these domains in astrophysical inference. We use a Meta-model and realistic crust at low densities, and Gaussian Process extensions at high densities. Comparisons between our semiparametric framework to fully nonparametric EoS representations show that imposing nuclear theoretical and experimental constraints through the Meta-model up to nuclear saturation density results in constraints on the pressure up to twice nuclear saturation density. We also show that our Gaussian Process trained on EoS models with nucleonic, hyperonic, and quark compositions extends the range of EoS explored at high density compared to a piecewise polytropic extension schema, under the requirements of causality of matter and of supporting the existence of heavy pulsars. We find that maximum TOV masses above $$3.2 M_{\odot}$$ can be supported by causal EoS compatible with nuclear constraints at low densities. We then combine information from existing observations of heavy pulsar masses, gravitational waves emitted from binary neutron star mergers, and X-ray pulse profile modeling of millisecond pulsars within a Bayesian inference scheme using our semiparametric EoS prior. With information from all public NICER pulsars (including PSR J0030$$+$$0451, PSR J0740$$+$$6620, PSR J0437-4715, and PSR J0614-3329), we find an astrophysically favored pressure at two times nuclear saturation density of $$P(2\rho_{\rm nuc}) = 1.98^{+2.13}_{-1.08}\times10^{34}$$ dyn/cm$$^{2}$$, a radius of a $$1.4 M_{\odot}$$ neutron star value of $$R_{1.4} = 11.4^{+0.98}_{-0.60}$$\;km, and $$M_{\rm max} = 2.31_{-0.23}^{+0.35} M_{\odot}$$ at the 90\% credible level.more » « less
-
Context.NGC 1068 is the most observed radio-quiet active galactic nucleus (AGN) in polarimetry, yet its high-energy polarization has never been probed before due to a lack of dedicated polarimeters. Aims.Using the first X-ray polarimeter sensitive enough to measure the polarization of AGNs, we want to probe the orientation and geometric arrangement of (sub)parsec-scale matter around the X-ray source. Methods.We used the Imaging X-ray Polarimetry Explorer (IXPE) satellite to measure, for the first time, the 2–8 keV polarization of NGC 1068. We pointed IXPE at the target for a net exposure time of 1.15 Ms, in addition to using twoChandrasnapshots of ∼10 ks each in order to account for the potential impact of several ultraluminous X-ray sources (ULXs) within IXPE’s field of view. Results.We measured a 2–8 keV polarization degree of 12.4% ± 3.6% and an electric vector polarization angle of 101° ± 8° at a 68% confidence level. If we exclude the spectral region containing bright Fe K lines and other soft X-ray lines where depolarization occurs, the polarization fraction rises to 21.3% ± 6.7% in the 3.5–6.0 keV band, with a similar polarization angle. The observed polarization angle is found to be perpendicular to the parsec-scale radio jet. Using a combinedChandraand IXPE analysis plus multiwavelength constraints, we estimated that the circumnuclear “torus” may sustain a half-opening angle of 50–55° (from the vertical axis of the system). Conclusions.Thanks to IXPE, we have measured the X-ray polarization of NGC 1068 and found comparable results, both in terms of the polarization angle orientation with respect to the radio jet and the torus half-opening angle, to the X-ray polarimetric measurement achieved for the other archetypal Compton-thick AGN: the Circinus galaxy. Probing the geometric arrangement of parsec-scale matter in extragalactic objects is now feasible thanks to X-ray polarimetry.more » « less
-
Abstract Neutron stars have solid crusts threaded by strong magnetic fields. Perturbations in the crust can excite nonradial oscillations, which can in turn launch Alfvén waves into the magnetosphere. In the case of a compact binary close to merger involving at least one neutron star, this can happen through tidal interactions causing resonant excitations that shatter the neutron star crust. We present the first numerical study that elucidates the dynamics of Alfvén waves launched in a compact binary magnetosphere. We seed a magnetic field perturbation on the neutron star crust, which we then evolve in fully general-relativistic force-free electrodynamics using a GPU-based implementation. We show that Alfvén waves steepen nonlinearly before reaching the orbital light cylinder, form flares, and dissipate energy in a transient current sheet. Our results predict radio and X-ray precursor emission from this process.more » « less
-
Abstract We have used X-ray data from the Neutron Star Interior Composition Explorer (NICER) to search for long-timescale temporal correlations (“red noise”) in the pulse times of arrival (TOAs) from the millisecond pulsars PSR J1824−2452A and PSR B1937+21. These data more closely track intrinsic noise because X-rays are unaffected by the radio-frequency-dependent propagation effects of the interstellar medium. Our search yields strong evidence (natural log Bayes factor of 9.634 ± 0.016) for red noise in PSR J1824−2452A, but the search is inconclusive for PSR B1937+21. In the interest of future X-ray missions, we devise and implement a method to simulate longer and higher-precision X-ray data sets to determine the timing baseline necessary to detect red noise. We find that the red noise in PSR B1937+21 can be reliably detected in a 5 yr mission with a TOA error of 2μs and an observing cadence of 20 observations per month compared to the 5μs TOA error and 11 observations per month that NICER currently achieves in PSR B1937+21. We investigate detecting red noise in PSR B1937+21 with other combinations of observing cadences and TOA errors. We also find that time-correlated red noise commensurate with an injected stochastic gravitational-wave background having an amplitude ofAGWB= 2 × 10−15and spectral index of timing residuals ofγGWB= 13/3 can be detected in a pulsar with similar TOA precision to PSR B1937+21. This is with no additional red noise in a 10 yr mission that observes the pulsar 15 times per month and has an average TOA error of 1μs.more » « less
An official website of the United States government

