skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bis(N-tert-butylacetamido)(dimethylamido)(chloro)titanium
The titanium amidate compound bis(N-tert-butylacetamido)(dimethylamido)(chloro)titanium was synthesized by the protonolysis of tris(dimethylamido)(chloro)titanium and structurally characterized by 1H and 13C NMR spectroscopy as well as X-ray diffraction. The compound does not appear to react cleanly nor readily with routine alkylating agents such as sec-butyllithium, benzyl potassium, or trimethylsilyl methyllithium.  more » « less
Award ID(s):
2101766 1039436
PAR ID:
10533307
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Molbank
Volume:
2024
Issue:
1
ISSN:
1422-8599
Page Range / eLocation ID:
M1786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As the size of the components in electronic devices decreases, new approaches and chemical modification schemes are needed to produce nanometer-size features with bottom-up manufacturing. Organic monolayers can be used as effective resists to block the growth of materials on non-growth substrates in area-selective deposition methods. However, choosing the appropriate surface modification requires knowledge of the corresponding chemistry and also a detailed investigation of the behavior of the functionalized surface in realistic deposition schemes. This study aims to investigate the chemistry of boronic acids that can be used to prepare such non-growth areas on elemental semiconductors. 4-Fluorophenylboronic acid is used as a model to investigate the possibility to utilize the Si(100) surface functionalized with this compound as a non-growth substrate in a titanium dioxide (TiO2) deposition scheme based on sequential doses of tetrakis(dimethylamido)titanium and water. A combination of X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry allows for a better understanding of the process. The resulting surface is shown to be an effective non-growth area to TiO2 deposition when compared to currently used H-terminated silicon surfaces but to exhibit much higher stability in ambient conditions. 
    more » « less
  2. In area-selective processes, such as area-selective atomic layer deposition (AS-ALD), there is renewed interest in designing surface modification schemes allowing to tune the reactivity of the nongrowth (NG) substrates. Many efforts are directed toward small molecule inhibitors or atomic layers, which would modify selected surfaces to delay nucleation and provide NG properties in the target AS-ALD processes allowing for the manufacturing of smaller sized features than those produced with alternative approaches. Bromine termination of silicon surfaces, specifically Si(100) and Si(111), is evaluated as a potential pathway to design NG substrates for the deposition of metal oxides, and TiO2 (from cycles of sequential exposures of tetrakis-dimethylamido-titanium and water) is tested as a prototypical deposition material. Nucleation delays on the surfaces produced are comparable to those on H-terminated silicon that is commonly used as an NG substrate. However, the silicon surfaces produced by bromination are more stable, and even oxidation does not change their chemical reactivity substantially. Once the NG surface is eventually overgrown after a large number of ALD cycles, bromine remains at the interface between silicon and TiO2. The NG behavior of different crystal faces of silicon appears to be similar, albeit not identical, despite different arrangements and coverage of bromine atoms. 
    more » « less
  3. The novel bench-stableN-quaternized keteneN,O-acetal, C16H19N2O+·CF3O3S, was synthesized and its structure determined. The title compound is a rare example of a pyridinium ketene hemiaminal for which a crystal structure has been determined, joining the 2-chloro-1-(1-ethyoxyethenyl)pyridin-1-ium trifluoromethanesulfonate salt from which it was synthesized. The cationic species of the title compound can be defined by three individually planar fragments assembling into a non-coplanar cation. The phenyl substituent extending from the amino nitrogen atom and the ethyoxyvinyl substituent extending from the pyridine N atom are oriented on the same side of the molecule and maintain the closest coplanar relationship of the three fragments. Supramolecular interactions are dominated by C—H...O interactions from the cation to the SO3side of the trifluoromethanesulfonate anion, forming a two-dimensional substructure. 
    more » « less
  4. Acyl(chloro)phosphines RC(O)P(Cl)( t -Bu) have been prepared by formal insertion of tert -butyl phosphinidene ( t -Bu–P) from t -BuP A ( A = C 14 H 10 or anthracene) into the C–Cl bond of acyl chlorides. We show that the under-explored acyl(chloro)phosphine functional group provides an efficient method to prepare bis(acyl)phosphines, which are important precursors to compounds used industrially as radical polymerization initiators. Experimental and computational investigations into the mechanism of formation of acyl(chloro)phosphines by our synthetic method reveal a pathway in which chloride attacks a phosphonium intermediate and leads to the reductive loss of anthracene from the phosphorus center in a P( v ) to P( iii ) process. The synthetic applicability of the acyl(chloro)phosphine functional group has been demonstrated by reduction to an acylphosphide anion, which can in turn be treated with an acyl chloride to furnish dissymmetric bis(acyl)phosphines. 
    more » « less
  5. Only two 4-halo-1H-pyrazole crystal structures are known to date (chloro and bromo, the structure of 4-iodo-1H-pyrazole has not been reported yet). The triclinic structure of 4-fluoro-1H-pyrazole, C3H3FN2(P\overline{1}), reported here is not isomorphous with those of the chloro and bromo analogues (which are isomorphous, orthorhombicPnma). To avoid sublimation during the measurement, diffraction data were collected at 150 K. Two crystallographically unique 4-fluoro-1H-pyrazole moieties linked by an N—H...N hydrogen bond are found in the asymmetric unit. Unlike the trimeric supramolecular motifs found in the structures of the chloro and bromo analogues, 4-fluoro-1H-pyrazole forms one-dimensional chains by intermolecular hydrogen bonding in the crystal. 
    more » « less