skip to main content

Title: Many-to-one binding by intrinsically disordered protein regions
Disordered binding regions (DBRs), which are embedded within intrinsically disordered proteins or regions (IDPs or IDRs), enable IDPs or IDRs to mediate multiple protein-protein interactions. DBR-protein complexes were collected from the Protein Data Bank for which two or more DBRs having different amino acid sequences bind to the same (100% sequence identical) globular protein partner, a type of interaction herein called many-to-one binding. Two distinct binding profiles were identified: independent and overlapping. For the overlapping binding profiles, the distinct DBRs interact by means of almost identical binding sites (herein called “similar”), or the binding sites contain both common and divergent interaction residues (herein called “intersecting”). Further analysis of the sequence and structural differences among these three groups indicate how IDP flexibility allows different segments to adjust to similar, intersecting, and independent binding pockets.
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1661391
Publication Date:
NSF-PAR ID:
10172565
Journal Name:
Pacific symposium on biocomputing
Volume:
25
Page Range or eLocation-ID:
159-170
ISSN:
2335-6928
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Protein intrinsically disordered regions (IDRs) play an important role in many biological processes. Two key properties of IDRs are (i) the occurrence is proteome-wide and (ii) the ratio of disordered residues is about 6%, which makes it challenging to accurately predict IDRs. Most IDR prediction methods use sequence profile to improve accuracy, which prevents its application to proteome-wide prediction since it is time-consuming to generate sequence profiles. On the other hand, the methods without using sequence profile fare much worse than using sequence profile.

    Method

    This article formulates IDR prediction as a sequence labeling problem and employs a new machine learning method called Deep Convolutional Neural Fields (DeepCNF) to solve it. DeepCNF is an integration of deep convolutional neural networks (DCNN) and conditional random fields (CRF); it can model not only complex sequence–structure relationship in a hierarchical manner, but also correlation among adjacent residues. To deal with highly imbalanced order/disorder ratio, instead of training DeepCNF by widely used maximum-likelihood, we develop a novel approach to train it by maximizing area under the ROC curve (AUC), which is an unbiased measure for class-imbalanced data.

    Results

    Our experimental results show that our IDR prediction method AUCpreD outperforms existing popular disorder predictors. More importantly,more »AUCpreD works very well even without sequence profile, comparing favorably to or even outperforming many methods using sequence profile. Therefore, our method works for proteome-wide disorder prediction while yielding similar or better accuracy than the others.

    Availability and Implementation

    http://raptorx2.uchicago.edu/StructurePropertyPred/predict/

    Contact

    wangsheng@uchicago.edu, jinboxu@gmail.com

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  2. Intrinsically disordered regions (IDRs) carry out many cellular functions and vary in length and placement in protein sequences. This diversity leads to variations in the underlying compositional biases, which were demonstrated for the short vs. long IDRs. We analyze compositional biases across four classes of disorder: fully disordered proteins; short IDRs; long IDRs; and binding IDRs. We identify three distinct biases: for the fully disordered proteins, the short IDRs and the long and binding IDRs combined. We also investigate compositional bias for putative disorder produced by leading disorder predictors and find that it is similar to the bias of the native disorder. Interestingly, the accuracy of disorder predictions across different methods is correlated with the correctness of the compositional bias of their predictions highlighting the importance of the compositional bias. The predictive quality is relatively low for the disorder classes with compositional bias that is the most different from the “generic” disorder bias, while being much higher for the classes with the most similar bias. We discover that different predictors perform best across different classes of disorder. This suggests that no single predictor is universally best and motivates the development of new architectures that combine models that target specific disordermore »classes.« less
  3. Abstract

    One of key features of intrinsically disordered regions (IDRs) is facilitation of protein–protein and protein–nucleic acids interactions. These disordered binding regions include molecular recognition features (MoRFs), short linear motifs (SLiMs) and longer binding domains. Vast majority of current predictors of disordered binding regions target MoRFs, with a handful of methods that predict SLiMs and disordered protein-binding domains. A new and broader class of disordered binding regions, linear interacting peptides (LIPs), was introduced recently and applied in the MobiDB resource. LIPs are segments in protein sequences that undergo disorder-to-order transition upon binding to a protein or a nucleic acid, and they cover MoRFs, SLiMs and disordered protein-binding domains. Although current predictors of MoRFs and disordered protein-binding regions could be used to identify some LIPs, there are no dedicated sequence-based predictors of LIPs. To this end, we introduce CLIP, a new predictor of LIPs that utilizes robust logistic regression model to combine three complementary types of inputs: co-evolutionary information derived from multiple sequence alignments, physicochemical profiles and disorder predictions. Ablation analysis suggests that the co-evolutionary information is particularly useful for this prediction and that combining the three inputs provides substantial improvements when compared to using these inputs individually. Comparative empirical assessmentsmore »using low-similarity test datasets reveal that CLIP secures area under receiver operating characteristic curve (AUC) of 0.8 and substantially improves over the results produced by the closest current tools that predict MoRFs and disordered protein-binding regions. The webserver of CLIP is freely available at http://biomine.cs.vcu.edu/servers/CLIP/ and the standalone code can be downloaded from http://yanglab.qd.sdu.edu.cn/download/CLIP/.

    « less
  4. Abstract

    In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands (‘decoys’). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.

  5. Cells adapt and respond to changes by regulating the activity of their genes. To turn genes on or off, they use a family of proteins called transcription factors. Transcription factors influence specific but overlapping groups of genes, so that each gene is controlled by several transcription factors that act together like a dimmer switch to regulate gene activity. The presence of transcription factors attracts proteins such as the Mediator complex, which activates genes by gathering the protein machines that read the genes. The more transcription factors are found near a specific gene, the more strongly they attract Mediator and the more active the gene is. A specific region on the transcription factor called the activation domain is necessary for this process. The biochemical sequences of these domains vary greatly between species, yet activation domains from, for example, yeast and human proteins are often interchangeable. To understand why this is the case, Sanborn et al. analyzed the genome of baker’s yeast and identified 150 activation domains, each very different in sequence. Three-quarters of them bound to a subunit of the Mediator complex called Med15. Sanborn et al. then developed a machine learning algorithm to predict activation domains in both yeast andmore »humans. This algorithm also showed that negatively charged and greasy regions on the activation domains were essential to be activated by the Mediator complex. Further analyses revealed that activation domains used different poses to bind multiple sites on Med15, a behavior known as ‘fuzzy’ binding. This creates a high overall affinity even though the binding strength at each individual site is low, enabling the protein complexes to remain dynamic. These weak interactions together permit fine control over the activity of several genes, allowing cells to respond quickly and precisely to many changes. The computer algorithm used here provides a new way to identify activation domains across species and could improve our understanding of how living things grow, adapt and evolve. It could also give new insights into mechanisms of disease, particularly cancer, where transcription factors are often faulty.« less