skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What is flat ΛCDM, and may we choose it?
Abstract The Universe is neither homogeneous nor isotropic, but it is close enough that we can reasonably approximate it as such on suitably large scales.The inflationary-Λ-Cold Dark Matter (ΛCDM) concordance cosmology builds on these assumptions to describe the origin and evolution of fluctuations. With standard assumptions about stress-energy sources, this system is specified by just seven phenomenological parameters,whose precise relations to underlying fundamental theories are complicated and may depend on details of those fields.Nevertheless, it is common practice to set the parameter that characterizes the spatial curvature, ΩK, exactly to zero.This parameter-fixed ΛCDM is awarded distinguished status as separate model, “flat ΛCDM.”Ipso factothis places the onus on proponents of “curved ΛCDM” to present sufficient evidence that ΩK≠ 0, and is needed as a parameter.While certain inflationary model Lagrangians, with certain values of their parameters, and certain initial conditions, will lead to a present-day universe well-described as containing zero curvature, this does not justify distinguishing that subset of Lagrangians, parameters and initial conditions into a separate model.Absent any theoretical arguments, we cannot use observations that suggest small ΩKto enforce ΩK= 0.Our track record in picking inflationary models and their parametersa priorimakes such a choice dubious, andconcerns about tensions in cosmological parameters and large-angle cosmic-microwave-background anomalies strengthens arguments against this choice.We argue that ΩKmust not be set to zero, and that ΛCDM remains a phenomenological model with at least 7 parameters.  more » « less
Award ID(s):
2013718
PAR ID:
10475744
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Journal of Cosmology and Astroparticle Physics
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2023
Issue:
02
ISSN:
1475-7516
Page Range / eLocation ID:
049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spatial curvature is one of the most fundamental parameters in our current concordance flat ΛCDM model of the Universe. The goal of this work is to investigate how the constraint on the spatial curvature is affected by an assumption on the sound horizon scale. The sound horizon is an essential quantity to use the standard ruler from the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAOs). As an example, we study the curvature constraint in an axion-like Early Dark Energy (EDE) model in light of recent cosmological datasets from Planck, the South Pole Telescope (SPT), and the Atacama Cosmology Telescope (ACT), as well as BAO data compiled in Sloan Digital Sky Survey Data Release 16. We find that, independent of the CMB datasets, the EDE model parameters are constrained only by the CMB power spectra as precisely and consistently as the flat case in previous work, even with the spatial curvature. We also demonstrate that combining CMB with BAO is extremely powerful to constrain the curvature parameter even with a reduction of the sound-horizon scale in an EDE model, resulting in Ω K = -0.0058± 0.0031 in the case of ACT+BAO after marginalizing over the parameters of the EDE model. This constraint is as competitive as the Planck+BAO result in a ΛCDM model, Ω K = -0.0001± 0.0018. 
    more » « less
  2. While the standard, six-parameter, spatially flat ΛCDM model has been highly successful, certain anomalies in the cosmic microwave background bring out a tension between this model and observations. The statistical significance of any one anomaly is small. However, taken together, the presence of two or more of them imply that according to standard inflationary theories we live in quite an exceptional Universe. We revisit the analysis of the PLANCK collaboration using loop quantum cosmology, where an unforeseen interplay between the ultraviolet and the infrared makes the primordial power spectrum scale dependent at very small k. Consequently, we are led to a somewhat different ΛCDM Universe in which anomalies associated with large scale power suppression and the lensing amplitude are both alleviated. The analysis also leads to new predictions for future observations. This article is addressed both to cosmology and loop quantum gravity communities, and we have attempted to make it self-contained. 
    more » « less
  3. Abstract We present a study on the inference of cosmological and astrophysical parameters using stacked galaxy cluster profiles. Utilizing the CAMELS-zoomGZ simulations, we explore how various cluster properties—such as X-ray surface brightness, gas density, temperature, metallicity, and Compton-y profiles—can be used to predict parameters within the 28-dimensional parameter space of the IllustrisTNG model. Through neural networks, we achieve a high correlation coefficient of 0.97 or above for all cosmological parameters, including Ωm,H0, andσ8, and over 0.90 for the remaining astrophysical parameters, showcasing the effectiveness of these profiles for parameter inference. We investigate the impact of different radial cuts, with bins ranging from 0.1R200cto 0.7R200c, to simulate current observational constraints. Additionally, we perform a noise sensitivity analysis, adding up to 40% Gaussian noise (corresponding to signal-to-noise ratios as low as 2.5), revealing that key parameters such as Ωm,H0, and the initial mass function slope remain robust even under extreme noise conditions. We also compare the performance of full radial profiles against integrated quantities, finding that profiles generally lead to more accurate parameter inferences. Our results demonstrate that stacked galaxy cluster profiles contain crucial information on both astrophysical processes within groups and clusters and the underlying cosmology of the Universe. This underscores their significance for interpreting the complex data expected from next-generation surveys and reveals, for the first time, their potential as a powerful tool for parameter inference. 
    more » « less
  4. Abstract The Hubble diagram of quasars, as candidates to “standardizable” candles, has been used to measure the expansion history of the Universe at late times, up to very high redshifts (z∼ 7). It has been shown that this history, as inferred from the quasar dataset, deviates at ≳ 3σlevel from the concordance (ΛCDM) cosmology model preferred by the cosmic microwave background (CMB) and other datasets. In this article, we investigate whether new physics beyond ΛCDM (BΛCDM) or beyond the Standard Model (BSM) could make the quasar data consistent with the concordance model. We first show that an effective redshift-dependent relation between the quasar UV and X-ray luminosities, complementing previous phenomenological work in the literature, can potentially remedy the discrepancy. Such a redshift dependence can be realized in a BSM model with axion-photon conversion in the intergalactic medium (IGM), although the preferred parameter space is in tension with various other astrophysical constraints on axions, at a level depending on the specific assumptions made regarding the IGM magnetic field. We briefly discuss a variation of the axion model that could evade these astrophysical constraints. On the other hand, we show that models beyond ΛCDM such as one with a varying dark energy equation of state (wCDM) or the phenomenological cosmographic model with a polynomial expansion of the luminosity distance, cannot alleviate the tension. The code for our analysis, based onemcee[1] andcorner.py[2], is publicly available atgithub.com/ChenSun-Phys/high_z_candles. 
    more » « less
  5. Let (Mn,g) be a complete simply connectedn-dimensional Riemannian manifold with curvature bounds Sectg≤ κ for κ ≤ 0 and Ricg≥ (n− 1)KgforK≤ 0. We prove that for any bounded domain Ω ⊂Mnwith diameterdand Lipschitz boundary, if Ω* is a geodesic ball in the simply connected space form with constant sectional curvature κ enclosing the same volume as Ω, then σ1(Ω) ≤Cσ1(Ω*), where σ1(Ω) and σ1(Ω*) denote the first nonzero Steklov eigenvalues of Ω and Ω* respectively, andC=C(n, κ,K,d) is an explicit constant. When κ =K, we haveC= 1 and recover the Brock–Weinstock inequality, asserting that geodesic balls uniquely maximize the first nonzero Steklov eigenvalue among domains of the same volume, in Euclidean space and the hyperbolic space. 
    more » « less