Among approaches for provably safe reinforcement learning, Model Predictive Shielding (MPS) has proven effective at complex tasks in continuous, high-dimensional state spaces, by leveraging a backup policy to ensure safety when the learned policy attempts to take risky actions. However, while MPS can ensure safety both during and after training, it often hinders task progress due to the conservative and task-oblivious nature of backup policies. This paper introduces Dynamic Model Predictive Shielding (DMPS), which optimizes reinforcement learning objectives while maintaining provable safety. DMPS employs a local planner to dynamically select safe recovery actions that maximize both short-term progress as well as long-term rewards. Crucially, the planner and the neural policy play a synergistic role in DMPS. When planning recovery actions for ensuring safety, the planner utilizes the neural policy to estimate long-term rewards, allowing it to observe beyond its short-term planning horizon. Conversely, the neural policy under training learns from the recovery plans proposed by the planner, converging to policies that are both high-performing and safe in practice. This approach guarantees safety during and after training, with bounded recovery regret that decreases exponentially with planning horizon depth. Experimental results demonstrate that DMPS converges to policies that rarely require shield interventions after training and achieve higher rewards compared to several state-of-the-art baselines
more »
« less
Verification-Guided Shielding for Deep Reinforcement Learning
In recent years, Deep Reinforcement Learning (DRL) has emerged as an effective approach to solving real-world tasks. However, despite their successes, DRL-based policies suffer from poor reliability, which limits their deployment in safety-critical domains. Various methods have been put forth to address this issue by providing formal safety guarantees. Two main approaches include shielding and verification. While shielding ensures the safe behavior of the policy by employing an external online component (i.e., a “shield”) that overrides potentially dangerous actions, this approach has a significant computational cost as the shield must be invoked at runtime to validate every decision. On the other hand, verification is an offline process that can identify policies that are unsafe, prior to their deployment, yet, without providing alternative actions when such a policy is deemed unsafe. In this work, we present verification-guided shielding — a novel approach that bridges the DRL reliability gap by integrating these two methods. Our approach combines both formal and probabilistic verification tools to partition the input domain into safe and unsafe regions. In addition, we employ clustering and symbolic representation procedures that compress the unsafe regions into a compact representation. This, in turn, allows to temporarily activate the shield solely in (potentially) unsafe regions, in an efficient manner. Our novel approach allows to significantly reduce runtime overhead while still preserving formal safety guarantees. We extensively evaluate our approach on two benchmarks from the robotic navigation domain, as well as provide an in-depth analysis of its scalability and completeness. 1
more »
« less
- Award ID(s):
- 2321786
- PAR ID:
- 10533600
- Publisher / Repository:
- . CoRR abs/2406.06507 (2024)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Narodytska, Nina; Ruemmer, Philipp (Ed.)Deep reinforcement learning (DRL) is a powerful machine learning paradigm for generating agents that control autonomous systems. However, the “black box” nature of DRL agents limits their deployment in real-world safety-critical applications. A promising approach for providing strong guarantees on an agent's behavior is to use Neural Lyapunov Barrier (NLB) certifcates, which are learned functions over the system whose properties indirectly imply that an agent behaves as desired. However, NLB-based certifcates are typically diffcult to learn and even more diffcult to verify, especially for complex systems. In this work, we present a novel method for training and verifying NLB-based certifcates for discrete-time systems. Specifcally, we introduce a technique for certifcate composition, which simplifes the verifcation of highly-complex systems by strategically designing a sequence of certifcates. When jointly verifed with neural network verifcation engines, these certifcates provide a formal guarantee that a DRL agent both achieves its goals and avoids unsafe behavior. Furthermore, we introduce a technique for certifcate fltering, which signifcantly simplifes the process of producing formally verifed certifcates. We demonstrate the merits of our approach with a case study on providing safety and liveness guarantees for a DRL-controlled spacecraft.more » « less
-
While Deep Reinforcement Learning (DRL) has achieved remarkable success across various domains, it remains vulnerable to occasional catastrophic failures without additional safeguards. An effective solution to prevent these failures is to use a shield that validates and adjusts the agent’s actions to ensure compliance with a provided set of safety specifications. For real-world robotic domains, it is essential to define safety specifications over continuous state and action spaces to accurately account for system dynamics and compute new actions that minimally deviate from the agent’s original decision. In this paper, we present the first shielding approach specifically designed to ensure the satisfaction of safety requirements in continuous state and action spaces, making it suitable for practical robotic applications. Our method builds upon realizability, an essential property that confirms the shield will always be able to generate a safe action for any state in the environment. We formally prove that realizability can be verified for stateful shields, enabling the incorporation of non-Markovian safety requirements, such as loop avoidance. Finally, we demonstrate the effectiveness of our approach in ensuring safety without compromising the policy’s success rate by applying it to a navigation problem and a multi-agent particle environment1. Keywords: Shielding, Reinforcement Learning, Safety, Roboticsmore » « less
-
Guaranteeing safety in human-centric applications is critical in robot learning as the learned policies may demonstrate unsafe behaviors in formerly unseen scenarios. We present a framework to locally repair an erroneous policy network to satisfy a set of formal safety constraints using Mixed Integer Quadratic Programming (MIQP). Our MIQP formulation explicitly imposes the safety constraints to the learned policy while minimizing the original loss function. The policy network is then verified to be locally safe. We demonstrate the application of our framework to derive safe policies for a robotic lower-leg prosthesis.more » « less
-
Learning safe solutions is an important but challenging problem in multi-agent reinforcement learning (MARL). Shielded reinforcement learning is one approach for preventing agents from choosing unsafe actions. Current shielded reinforcement learning methods for MARL make strong assumptions about communication and full observability. In this work, we extend the formalization of the shielded reinforcement learning problem to a decentralized multi-agent setting. We then present an algorithm for decomposition of a centralized shield, allowing shields to be used in such decentralized, communication-free environments. Our results show that agents equipped with decentralized shields perform comparably to agents with centralized shields in several tasks, allowing shielding to be used in environments with decentralized training and execution for the first time.more » « less
An official website of the United States government

