Introduction:Seismocardiography (SCG) - measurements of cardiovascular-induced vibrations on the chest - has shown potential for providing clinical information for cardiac conditions. SCG is conventionally recorded by an accelerometer attached to a single point on chest. Recent research suggests multichannel SCG (mSCG) - measurements from multiple chest locations - can provide extra and more accurate clinical information. Current mSCG methods are limited to accelerometer arrays, laser Doppler vibrometry, and airborne ultrasound that are either costly, difficult for inexperienced users, or need bulky equipment, thereby impeding their use beyond research or clinical settings. Hypothesis:mSCG signals can be accurately estimated from tiny chest movements in chest videos recorded by ordinary cameras, e.g., those in smartphones. Methods:We enrolled 10 subjects (sbjs) with no history of CVDs (21.7 ± 1.7 years, 40% women). ECG and chest video of sbjs were recorded at rest for 15 sec during breath hold at the end of inhalation followed by another 15 sec recording during breath hold at the end of exhalation. We developed an AI-powered mobile app to record the chest videos and convert them to 0-30 Hz mSCG in right-to-left (RL) and head-to-foot (HF) directions (Fig 1a). Heart rate (HR) based on ECG RR interval and mSCG was measured and compared. Results:HR estimated from mSCG in both RL and HF directions had a good agreement with ECG-based HR using Bland-Altman analysis [RL: bias = 1.4 bpm, 95% CI = 5.6 bpm; HF: bias = 0.8 bpm, 95% CI = 6.2 bpm (Fig 1b)]. High-quality mSCG and ECG measurements were obtained for all sbjs. Conclusion:Clinically relevant information can be accurately extracted from chest videos using our novel, contactless, AI-based method. Given that the vast majority of Americans have access to a camera phone, future developments of this method may provide new means of remote and accessible cardiac monitoring.
more »
« less
Physiological sensing on the upper arm with a wireless multi-modal wearable
In this research, we examine the potential of measuring physiological variables, including heart rate (HR) and respiration rate (RR) on the upper arm using a wireless multimodal sensing system consisting of an accelerometer, a gyroscope, a three-wavelength photoplethysmography (PPG), single-sided electrocardiography (SS-ECG), and bioimpedance (BioZ). The study included collecting HR data when the subject was at rest and typing, and RR data when the subject was at rest. The data from three wavelengths of PPG and BioZ were collected and compared to the SS-ECG as the standard. The accelerometer and gyro signals were used to exclude data with excessive noise due to motion. The results showed that when the subject remained sedentary, the mean absolute error (MAE) for the HR calculation for all three wavelengths of the PPG modality was less than two bpm, while the BioZ was 3.5 bpm compared with SS-ECG HR. The MAE for typing increased for both modalities and was less than three bpm for all three wavelengths of the PPG but increased to 7.5 bpm for the BioZ. Regarding RR, both modalities resulted in RR within one breath per minute of the SS-ECG modality for the one breathing rate. Overall, all modalities on this upper arm wearable worked well when the subject was sedentary. Still, the SS-ECG and PPG showed less variability for the HR signal in the presence of motion during micro-motions such as typing.
more »
« less
- Award ID(s):
- 2037383
- PAR ID:
- 10533609
- Editor(s):
- Baba, Justin S; Coté, Gerard L
- Publisher / Repository:
- SPIE
- Date Published:
- ISBN:
- 9781510669598
- Page Range / eLocation ID:
- 26
- Format(s):
- Medium: X
- Location:
- San Francisco, United States
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article presents a computational solution that enables continuous cardiac monitoring through cross-modality inference of electrocardiogram (ECG). While some smartwatches now allow users to obtain a 30-s ECG test by tapping a built-in bio-sensor, these short-term ECG tests often miss intermittent and asymptomatic abnormalities of cardiac functions. It is also infeasible to expect persistently active user participation for long-term continuous cardiac monitoring in order to capture these and other types of cardiac abnormalities. To alleviate the need for continuous user attention and active participation, we design a lightweight neural network that infers ECG from the photoplethysmogram (PPG) signal sensed at the skin surface by a wearable optical sensor. We also develop a diagnosis-oriented training strategy to enable the neural network to capture the pathological features of ECG, aiming to increase the utility of reconstructed ECG signals for screening cardiovascular diseases (CVDs). We also leverage model interpretation to obtain insights from data-driven models, for example, to reveal some associations between CVDs and ECG/PPG and to demonstrate how the neural network copes with motion artifacts in the ambulatory application. The experimental results on three datasets demonstrate the feasibility of inferring ECG from PPG, achieving a high fidelity of ECG reconstruction with only about 40000 parameters.more » « less
-
ABSTRACT IntroductionCurrent wearables that collect heart rate and acceleration were not designed for children and/or do not allow access to raw signals, making them fundamentally unverifiable. This study describes the creation and calibration of an open-source multichannel platform (PATCH) designed to measure heart rate and acceleration in children ages 3–8 yr. MethodsChildren (N = 63; mean age, 6.3 yr) participated in a 45-min protocol ranging in intensities from sedentary to vigorous activity. Actiheart-5 was used as a comparison measure. We calculated mean bias, mean absolute error (MAE) mean absolute percent error (MA%E), Pearson correlations, and Lin’s concordance correlation coefficient (CCC). ResultsMean bias between PATCH and Actiheart heart rate was 2.26 bpm, MAE was 6.67 bpm, and M%E was 5.99%. The correlation between PATCH and Actiheart heart rate was 0.89, and CCC was 0.88. For acceleration, mean bias was 1.16 mg and MAE was 12.24 mg. The correlation between PATCH and Actiheart was 0.96, and CCC was 0.95. ConclusionsThe PATCH demonstrated clinically acceptable accuracies to measure heart rate and acceleration compared with a research-grade device.more » « less
-
Respiration rate and heart rate variability (HRV) due to respiratory sinus arrhythmia (RSA) are physiological measurements that can offer useful diagnostics for a variety of medical conditions. This study uses a wrist-worn wearable development platform from Maxim Integrated and Doppler radar sensor developed by Adnoviv, Inc. to non-invasively measure these physiological signals. Six datasets are recorded comprising of five different individuals in varying physical environments breathing at different respiration rates. First, respiration rates are extracted from photoplethysmography (PPG) and accelerometer data and compared to Doppler radar. The average maximum and minimum difference between Doppler radar extracted RR and PPG, HRV RSA, and accelerometer extracted RR is 0.342 b/m and 0.171 b/m, respectively. Then, waveforms for Doppler radar, PPG, and HRV RSA signals are plotted in time domain and an analysis discusses the physical phenomena associated with the phase alignment of the signals.more » « less
-
Abstract This work details the partially observable markov decision process (POMDP) and the point-based value iteration (PBVI) algorithms for use in multisensor systems, specifically, a sensor system capable of heart rate (HR) estimation through wearable photoplethysmography (PPG) and accelerometer signals. PPG sensors are highly susceptible to motion artifact (MA); however, current methods focus more on overall MA filters, rather than action specific filtering. An end-to-end embedded human activity recognition (HAR) System is developed to represent the observation uncertainty, and two action specific PPG MA reducing filters are proposed as actions. PBVI allows optimal action decision-making based on an uncertain observation, effectively balancing correct action choice and sensor system cost. Two central systems are proposed to accompany these algorithms, one for unlimited observation access and one for limited observation access. Through simulation, it can be shown that the limited observation system performs optimally when sensor cost is negligible, while limited observation access performs optimally when a negative reward for sensor use is considered. The final general framework for POMDP and PBVI was applied to a specific HR estimation example. This work can be expanded on and used as a basis for future work on similar multisensor system.more » « less
An official website of the United States government

