skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inferring Electrocardiography From Optical Sensing Using Lightweight Neural Network
This article presents a computational solution that enables continuous cardiac monitoring through cross-modality inference of electrocardiogram (ECG). While some smartwatches now allow users to obtain a 30-s ECG test by tapping a built-in bio-sensor, these short-term ECG tests often miss intermittent and asymptomatic abnormalities of cardiac functions. It is also infeasible to expect persistently active user participation for long-term continuous cardiac monitoring in order to capture these and other types of cardiac abnormalities. To alleviate the need for continuous user attention and active participation, we design a lightweight neural network that infers ECG from the photoplethysmogram (PPG) signal sensed at the skin surface by a wearable optical sensor. We also develop a diagnosis-oriented training strategy to enable the neural network to capture the pathological features of ECG, aiming to increase the utility of reconstructed ECG signals for screening cardiovascular diseases (CVDs). We also leverage model interpretation to obtain insights from data-driven models, for example, to reveal some associations between CVDs and ECG/PPG and to demonstrate how the neural network copes with motion artifacts in the ambulatory application. The experimental results on three datasets demonstrate the feasibility of inferring ECG from PPG, achieving a high fidelity of ECG reconstruction with only about 40000 parameters.  more » « less
Award ID(s):
2124291
PAR ID:
10538192
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE Transactions on Artificial Intelligence
Date Published:
Journal Name:
IEEE Transactions on Artificial Intelligence
Volume:
5
Issue:
7
ISSN:
2691-4581
Page Range / eLocation ID:
3535 to 3550
Subject(s) / Keyword(s):
Cross-modality inference, electrocardiogram (ECG), neural network, photoplethysmogram (PPG), physiological digital twin, tele-health.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional one-time user authentication processes might cause friction and unfavorable user experience in many widely-used applications. This is a severe problem in particular for security-sensitive facilities if an adversary could obtain unauthorized privileges after a user’s initial login. Recently, continuous user authentication (CA) has shown its great potential by enabling seamless user authentication with few active participation. We devise a low-cost system exploiting a user’s pulsatile signals from the photoplethysmography (PPG) sensor in commercial wrist-worn wearables for CA. Compared to existing approaches, our system requires zero user effort and is applicable to practical scenarios with non-clinical PPG measurements having motion artifacts (MA). We explore the uniqueness of the human cardiac system and design an MA filtering method to mitigate the impacts of daily activities. Furthermore, we identify general fiducial features and develop an adaptive classifier using the gradient boosting tree (GBT) method. As a result, our system can authenticate users continuously based on their cardiac characteristics so little training effort is required. Experiments with our wrist-worn PPG sensing platform on 20 participants under practical scenarios demonstrate that our system can achieve a high CA accuracy of over 90% and a low false detection rate of 4% in detecting random attacks. 
    more » « less
  2. The inverse problem of inferring clinical gold-standard electrocardiogram (ECG) from photoplethysmogram (PPG) that can be measured by affordable wearable Internet of Healthcare Things (IoHT) devices is a research direction receiving growing attention. It combines the easy measurability of PPG and the rich clinical knowledge of ECG for long-term continuous cardiac monitoring. The prior art for reconstruction using a universal basis, such as discrete cosine transform (DCT), has limited fidelity for uncommon ECG shapes due to the lack of representative power. To better utilize the data and improve data representation, we design two dictionary learning frameworks, the cross-domain joint dictionary learning (XDJDL), and the label-consistent XDJDL (LC-XDJDL), to further improve the ECG inference quality and enrich the PPG-based diagnosis knowledge. Building on the K-SVD technique, the proposed joint dictionary learning frameworks extend the expressive power by optimizing simultaneously a pair of signal dictionaries for PPG and ECG with the transforms to relate their sparse codes and disease information. The proposed models are evaluated with a variety of PPG and ECG morphologies from two benchmark datasets that cover various age groups and disease types. The results show the proposed frameworks achieve better inference performance than previous methods with average Pearson coefficients being 0.88 using XDJDL and 0.92 using LC-XDJDL, suggesting an encouraging potential for ECG screening using PPG based on the proactively learned PPG-ECG relationship. By enabling the dynamic monitoring and analysis of the health status of an individual, the proposed frameworks contribute to the emerging digital twins paradigm for personalized healthcare. 
    more » « less
  3. Physiological and kinematic signals from humans are often used for monitoring health. Several processes of interest (e.g., cardiac and respiratory processes, and locomotion) demonstrate periodicity. Training models for inference on these signals (e.g., detection of anomalies, and extraction of biomarkers) require large amounts of data to capture their variability, which are not readily available. This hinders the performance of complex inference models. In this work, we introduce a methodology for improving inference on such signals by incorporating phase-based interpretability and other inference tasks into a multi-task framework applied to a generative model. For this purpose, we utilize phase information as a regularization term and as an input to the model and introduce an interpretable unit in a neural network, which imposes an interpretable structure on the model. This imposition helps us in the smooth generation of periodic signals that can aid in data augmentation tasks. We demonstrate the impact of our framework on improving the overall inference performance on ECG signals and inertial signals from gait locomotion. 
    more » « less
  4. Construction workers often experience high levels of physical and mental stress due to the demanding nature of their work on construction sites. Real-time health monitoring can provide an effective means of detecting these stressors. Previous research in this field has demonstrated the potential of photoplethysmography (PPG), which represents cardiac activities, as a biomarker for assessing various stressors, including physical fatigue, mental stress, and heat stress. However, PPG acquisition during construction tasks is subject to several external noises, of which motion artifact is a major one. To address this, the study develops and examines an autoencoder network—a special type of artificial neural network—to remove PPG signals’ motion artifacts during construction tasks, thereby enhancing the accuracy of health assessments.Artifact-free PPG signals are acquired through subjects in a stationary position, which is used as the reference for training the autoencoder network. The network’s performance is examined with PPG signals acquired from the same subjects performing multiple construction tasks. The developed autoencoder network can increase the signal-to-noise ratio (SNR) by up to 33% for the corrupted signals acquired in a construction setting. This research contributes to the extensive and resilient use of PPG signals in health monitoring for construction workers. 
    more » « less
  5. Abstract Heart rhythm assessment is indispensable in diagnosis and management of many cardiac conditions and to study heart rate variability in healthy individuals. We present a proof-of-concept system for acquiring individual heart beats using smart speakers in a fully contact-free manner. Our algorithms transform the smart speaker into a short-range active sonar system and measure heart rate and inter-beat intervals (R-R intervals) for both regular and irregular rhythms. The smart speaker emits inaudible 18–22 kHz sound and receives echoes reflected from the human body that encode sub-mm displacements due to heart beats. We conducted a clinical study with both healthy participants and hospitalized cardiac patients with diverse structural and arrhythmic cardiac abnormalities including atrial fibrillation, flutter and congestive heart failure. Compared to electrocardiogram (ECG) data, our system computed R-R intervals for healthy participants with a median error of 28 ms over 12,280 heart beats and a correlation coefficient of 0.929. For hospitalized cardiac patients, the median error was 30 ms over 5639 heart beats with a correlation coefficient of 0.901. The increasing adoption of smart speakers in hospitals and homes may provide a means to realize the potential of our non-contact cardiac rhythm monitoring system for monitoring of contagious or quarantined patients, skin sensitive patients and in telemedicine settings. 
    more » « less