skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algorithmic Fairness in Distribution of Resources and Tasks
The widespread adoption of Artificial Intelligence (AI) systems has profoundly reshaped decision-making in social, political, and commercial contexts. This paper explores the critical issue of fairness in AI-driven decision-making, particularly in allocating resources and tasks. By examining recent advancements and key questions in computational social choice, I highlight challenges and prospects in designing fair systems in collective decision-making that are scalable, adaptable to intricate environments, and are aligned with complex and diverse human preferences.  more » « less
Award ID(s):
2144413 2107173
PAR ID:
10533714
Author(s) / Creator(s):
Publisher / Repository:
International Joint Conferences on Artificial Intelligence Organization
Date Published:
ISBN:
978-1-956792-04-1
Page Range / eLocation ID:
8541 to 8546
Format(s):
Medium: X
Location:
Jeju, South Korea
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose of Review: A transdisciplinary systems approach to the design of an artificial intelligence (AI) decision support system can more effectively address the limitations of AI systems. By incorporating stakeholder input early in the process, the final product is more likely to improve decision-making and effectively reduce kidney discard. Recent Findings: Kidney discard is a complex problem that will require increased coordination between transplant stakeholders. An AI decision support system has significant potential, but there are challenges associated with overfitting, poor explainability, and inadequate trust. A transdisciplinary approach provides a holistic perspective that incorporates expertise from engineering, social science, and transplant healthcare. A systems approach leverages techniques for visualizing the system architecture to support solution design from multiple perspectives. Summary: Developing a systems-based approach to AI decision support involves engaging in a cycle of documenting the system architecture, identifying pain points, developing prototypes, and validating the system. Early efforts have focused on describing process issues to prioritize tasks that would benefit from AI support. 
    more » « less
  2. AI-assisted decision-making systems hold immense potential to enhance human judgment, but their effectiveness is often hindered by a lack of understanding of the diverse ways in which humans take AI recommendations. Current research frequently relies on simplified, ``one-size-fits-all'' models to characterize an average human decision-maker, thus failing to capture the heterogeneity of people's decision-making behavior when incorporating AI assistance. To address this, we propose Mix and Match (M&M), a novel computational framework that explicitly models the diversity of human decision-makers and their unique patterns of relying on AI assistance. M&M represents the population of decision-makers as a mixture of distinct decision-making processes, with each process corresponding to a specific type of decision-maker. This approach enables us to infer latent behavioral patterns from limited data of human decisions under AI assistance, offering valuable insights into the cognitive processes underlying human-AI collaboration. Using real-world behavioral data, our empirical evaluation demonstrates that M&M consistently outperforms baseline methods in predicting human decision behavior. Furthermore, through a detailed analysis of the decision-maker types identified in our framework, we provide quantitative insights into nuanced patterns of how different individuals adopt AI recommendations. These findings offer implications for designing personalized and effective AI systems based on the diverse landscape of human behavior patterns in AI-assisted decision-making across various domains. 
    more » « less
  3. Sustainability encompasses many wicked problems involving complex interdependencies across social, natural, and engineered systems. We argue holistic multiscale modeling and decision-support frameworks are needed to address multifaceted interdisciplinary aspects of these wicked problems. This review highlights three emerging research areas for artificial intelligence (AI) and machine learning (ML) in molecular-to-systems engineering for sustainability: (1) molecular discovery and materials design, (2) automation and self-driving laboratories, (3) process and systems-of-systems optimization. Recent advances in AI and ML are highlighted in four contemporary application areas in chemical engineering design: (1) equitable energy systems, (2) decarbonizing the power sector, (3) circular economies for critical materials, and (4) next-generation heating and cooling. These examples illustrate how AI and ML enable more sophisticated interdisciplinary multiscale models, faster optimization algorithms, more accurate uncertainty quantification, smarter and faster data collection, and incorporation of diverse stakeholders into decision-making processes, improving the robustness of engineering and policy designs while focusing on the multifaceted goals and constraints in wicked problems. 
    more » « less
  4. Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, a geologist who confidently interprets ambiguous data as representative of a familiar category form their research (e.g., strike slip faults for expert in extensional domains) is exhibiting the availability bias, which occurs when people make judgments based on what is most dominant or accessible in memory. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we summarize the key insights from decision making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists decision making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to those strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision making, where debiased decision making is an emergent property of the coordinated and integrated processing of human-AI collaborative teams. 
    more » « less
  5. People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted. To help people appropriately rely on AI aids, we propose showing them behavior descriptions, details of how AI systems perform on subgroups of instances. We tested the efficacy of behavior descriptions through user studies with 225 participants in three distinct domains: fake review detection, satellite image classification, and bird classification. We found that behavior descriptions can increase human-AI accuracy through two mechanisms: helping people identify AI failures and increasing people's reliance on the AI when it is more accurate. These findings highlight the importance of people's mental models in human-AI collaboration and show that informing people of high-level AI behaviors can significantly improve AI-assisted decision making. 
    more » « less