Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, a geologist who confidently interprets ambiguous data as representative of a familiar category form their research (e.g., strike slip faults for expert in extensional domains) is exhibiting the availability bias, which occurs when people make judgments based on what is most dominant or accessible in memory. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we summarize the key insights from decision making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists decision making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to those strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision making, where debiased decision making is an emergent property of the coordinated and integrated processing of human-AI collaborative teams.
more » « less- NSF-PAR ID:
- 10100737
- Date Published:
- Journal Name:
- Solid Earth Discussions
- ISSN:
- 1869-9537
- Page Range / eLocation ID:
- 1 to 34
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision-making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision-making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; geoscientists who have spent the past several months studying strike-slip faults will have this terrain most readily available in their mind when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we outline the key insights from decision-making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision-making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists' decision-making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision-making, wherein debiased decision-making is an emergent property of the coordinated and integrated processing of human–AI collaborative teams.more » « less
-
The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.
-
As artificial intelligence (AI) assisted search and recommender systems have become ubiquitous in workplaces and everyday lives, understanding and accounting for fairness has gained increasing attention in the design and evaluation of such systems. While there is a growing body of computing research on measuring system fairness and biases associated with data and algorithms, the impact of human biases that go beyond traditional machine learning (ML) pipelines still remain understudied. In this Perspective Paper, we seek to develop a two-sided fairness framework that not only characterizes data and algorithmic biases, but also highlights the cognitive and perceptual biases that may exacerbate system biases and lead to unfair decisions. Within the framework, we also analyze the interactions between human and system biases in search and recommendation episodes. Built upon the two-sided framework, our research synthesizes intervention and intelligent nudging strategies applied in cognitive and algorithmic debiasing, and also proposes novel goals and measures for evaluating the performance of systems in addressing and proactively mitigating the risks associated with biases in data, algorithms, and bounded rationality. This paper uniquely integrates the insights regarding human biases and system biases into a cohesive framework and extends the concept of fairness from human-centered perspective. The extended fairness framework better reflects the challenges and opportunities in users’ interactions with search and recommender systems of varying modalities. Adopting the two-sided approach in information system design has the potential to enhancing both the effectiveness in online debiasing and the usefulness to boundedly rational users engaging in information-intensive decision-making.more » « less
-
The use of cognitive heuristics often leads to fast and effective decisions. However, they can also systematically and predictably lead to errors known as cognitive biases. Strategies for minimizing or mitigating these biases, however, remain largely non-technological (e.g., training courses). The growing use of visual analytic (VA) tools for analysis and decision making enables a new class of bias mitigation strategies. In this work, we explore the ways in which the design of visualizations (vis) may be used to mitigate cognitive biases. We derive a design space comprised of 8 dimensions that can be manipulated to impact a user's cognitive and analytic processes and describe them through an example hiring scenario. This design space can be used to guide and inform future vis systems that may integrate cognitive processes more closely.more » « less
-
Abstract The current study examined the potential for cognitive bias in lay examiners' comparisons of footwear impressions within the technical review process while addressing limitations of previous research. Prior research has found inconsistent results regarding the extent to which cognitive bias may influence forensic comparisons, often asking non‐experts to review forensic stimuli above their competency level. Furthermore, past research has largely ignored the potential for cognitive bias during the technical review process. In collaboration with the Miami‐Dade Police Department's Forensic Services Bureau, we examined the effects of previous examiners' level of experience and prior knowledge of the previous examiner's decision on the technical review stage of footwear impression stimuli. Before lay examiners were presented with pairs of known match and nonmatch footwear impressions, they were either told that an expert or a novice had previously examined them and determined them to be either a match, nonmatch, or inconclusive (plus a no‐information condition). Participants then evaluated each pair of footwear impressions to make their own determinations of match, nonmatch, or inconclusive. Results support the technical review process for all decision types, as known nonmatch stimuli were generally more difficult for lay examiners to assess than known match stimuli. Knowledge of
a prior examiner's decision and status was observed only when the prior decision was inconclusive, suggesting the need for inclusion of inconclusive decisions in future research examining cognitive bias in forensic examination.