We report on terahertz (THz) electron paramagnetic resonance generalized spectroscopic ellipsometry (THz-EPR-GSE). Measurements of field and frequency dependencies of magnetic response due to spin transitions associated with nitrogen defects in 4H-SiC are shown as an example. THz-EPR-GSE dispenses with the need of a cavity, permits independently scanning field and frequency parameters, and does not require field or frequency modulation. We investigate spin transitions of hexagonal ( h) and cubic ( k) coordinated nitrogen including coupling with its nuclear spin (I = 1), and we propose a model approach for the magnetic susceptibility to account for the spin transitions. From the THz-EPR-GSE measurements, we can fully determine polarization properties of the spin transitions, and we can obtain the k coordinated nitrogen g and hyperfine splitting parameters using magnetic field and frequency dependent Lorentzian oscillator line shape functions. Magnetic-field line broadening presently obscures access to h parameters. We show that measurements of THz-EPR-GSE at positive and negative fields differ fundamentally and hence provide additional information. We propose frequency-scanning THz-EPR-GSE as a versatile method to study properties of spins in solid state materials.
more »
« less
Universal determination of comagnetometer response to spin couplings
We propose and demonstrate a general method to calibrate the frequency-dependent response of selfcompensating noble-gas–alkali-metal comagnetometers to arbitrary spin perturbations. This includes magnetic and nonmagnetic perturbations such as rotations and exotic spin interactions. The method is based on a fit of the magnetic field response to an analytical model. The frequency-dependent response of the comagnetometer to arbitrary spin perturbations can be inferred using the fit parameters. We demonstrate the effectiveness of this method by comparing the inferred rotation response to an experimental measurement of the rotation response. Our results show that experiments relying on zero-frequency calibration of the comagnetometer response can over- or underestimate the comagnetometer sensitivity by orders of magnitude over a wide frequency range. Moreover, this discrepancy accumulates over time as operational parameters tend to drift during comagnetometer operation. The demonstrated calibration protocol enables accurate prediction and control of comagnetometer sensitivity to, for example, ultralight bosonic dark-matter fields coupling to electron or nuclear spins, as well as accurate monitoring and control of the relevant system parameters.
more »
« less
- Award ID(s):
- 2110388
- PAR ID:
- 10533768
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose, design, and experimentally demonstrate a nonlocal metasurface with frequency-selective, wavefront shaping capabilities and at the same time polarization-selective chiral response. This operation requires the implementation of bilayer metasurfaces with engineered nonlocal response, wherein each layer controls locally a specific linear polarization, while the coupled system supports arbitrary polarization states. We demonstrate that this platform enables unprecedented control over wavefront manipulation, including frequency-selective, spin-selective reflection with arbitrary geometric phase. We observe a highly chiral response with record-high reflectance efficiency over a narrow frequency window, both for a uniform metasurface and for one with tailored phase gradient for anomalous reflection. Both devices provide an efficiency well above the theoretical limit of 25% for conventional single-layer devices. Our work opens exciting opportunities for augmented reality and enhanced secure wireless communications.more » « less
-
Magnons, the quanta of collective spin excitations in magnetic materials, may enable functionalities, such as nonreciprocity and transduction in hybrid quantum devices. To assess the potential of such applications, it is necessary to understand magnon dynamics beyond the simple harmonic oscillator regime, where theory predicts effects like population-dependent damping and quantum fluctuations in the form of magnon shot noise. Probing these phenomena requires sensors with high sensitivity and the ability to resolve magnon properties across different excitation regimes. Here, we demonstrate accurate and sensitive detection of magnon population and decay over a wide range of occupation numbers. We use a superconducting qubit to probe magnons in a ferrimagnet over approximately 2000 excitations. Using qubit control and parametrically induced qubit-magnon interactions, we demonstrate few-excitation sensitive detection of magnons with a dynamic range of approximately 30 dB, and are able to accurately resolve their decay with few-ns sensitivity. These capabilities offer a powerful and practical technique for probing magnon dynamics in or beyond the linear regime over a wide range of excitations.more » « less
-
Chen, Chi-Hua (Ed.)Magnetic particle tracking is a recently developed technology that can measure the translation and rotation of a particle in an opaque environment like a turbidity flow and fluidized-bed flow. The trajectory reconstruction usually relies on numerical optimization or filtering, which involve artificial parameters or thresholds. Existing analytical reconstruction algorithms have certain limitations and usually depend on the gradient of the magnetic field, which is not easy to measure accurately in many applications. This paper discusses a new semi-analytical solution and the related reconstruction algorithm. The new method can be used for an arbitrary sensor arrangement. To reduce the measurement uncertainty in practical applications, deep neural network (DNN)-based models are developed to denoise the reconstructed trajectory. Compared to traditional approaches such as wavelet-based filtering, the DNN-based denoisers are more accurate in the position reconstruction. However, they often over-smooth the velocity signal, and a hybrid method that combines the wavelet and DNN model provides a more accurate velocity reconstruction. All the DNN-based and wavelet methods perform well in the orientation reconstruction.more » « less
-
Abstract The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions,etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3with 10−9strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.more » « less
An official website of the United States government

