Abstract After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass distribution within 20 pc, which serves as a constraint on star formation theory at the lowest masses. Unlike objects on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass function must therefore be procured through proxy measurements and theoretical models. We utilize various assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals the most likely mass function. We find that a simple power law ( ) withα≈ 0.5 is optimal. Additionally, we conclude that the low-mass cutoff for star formation is ≲0.005M⊙. We corroborate the findings of Burgasser, which state that the birthrate has a far lesser impact than the mass function on the form of the temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values ofαthan the constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of very old (8–10 Gyr) brown dwarfs.
more »
« less
The Initial Mass Function Based on the Full-sky 20 pc Census of ∼3600 Stars and Brown Dwarfs
Abstract A complete accounting of nearby objects—from the highest-mass white dwarf progenitors down to low-mass brown dwarfs—is now possible, thanks to an almost complete set of trigonometric parallax determinations from Gaia, ground-based surveys, and Spitzer follow-up. We create a census of objects within a Sun-centered sphere of 20 pc radius and check published literature to decompose each binary or higher-order system into its separate components. The result is a volume-limited census of ∼3600individualstar formation products useful in measuring the initial mass function across the stellar (<8M⊙) and substellar (≳5MJup) regimes. Comparing our resulting initial mass function to previous measurements shows good agreement above 0.8M⊙and a divergence at lower masses. Our 20 pc space densities are best fit with a quadripartite power law, , with long-established values ofα= 2.3 at high masses (0.55 <M< 8.00M⊙), andα= 1.3 at intermediate masses (0.22 <M< 0.55M⊙), but at lower masses, we findα= 0.25 for 0.05 <M< 0.22M⊙, andα= 0.6 for 0.01 <M< 0.05M⊙. This implies that the rate of production as a function of decreasing mass diminishes in the low-mass star/high-mass brown dwarf regime before increasing again in the low-mass brown dwarf regime. Correcting for completeness, we find a star to brown dwarf number ratio of, currently, 4:1, and an average mass per object of 0.41M⊙.
more »
« less
- PAR ID:
- 10533774
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 271
- Issue:
- 2
- ISSN:
- 0067-0049
- Page Range / eLocation ID:
- 55
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are and , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( ). Among them, , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ⋆) in high-surface-density regions (Σ⋆≥ 100M⊙pc−2), following the power-law relations and . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σ⋆as a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σ⋆is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.more » « less
-
Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H]= −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.more » « less
-
Abstract The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014M⊙galaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution of or (observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to be , suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe.more » « less
-
Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over , gas surface density Σgas∼ 5–150M⊙pc−2, and stellar surface density Σstar∼ 1–50M⊙pc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5M⊙kpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight . For given Σgasand Σstar, we find . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as , while the combined turbulent and magnetic feedback yield shows weaker dependence . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved.more » « less
An official website of the United States government

