skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238468

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We conducted a search for new ultracool companions to nearby white dwarfs using multiple methods, including the analysis of colors and examination of images in both the optical and the infrared. Through this process, we identified 51 previously unrecognized systems with candidate ultracool companions. 31 of these systems are resolved in at least one catalog, and all but six are confirmed as comoving companions via common proper motion and consistent parallax measurements (when available). We have followed up four comoving companions with near-infrared spectroscopy and confirm their ultracool nature. The remaining twenty candidates are unresolved, but show clear signs of infrared excess which is most likely due to the presence of a cold, low-mass companion or a dusty circumstellar disk. Three of these unresolved systems have existing optical spectra that clearly show the presence of a cool stellar companion to the white dwarf primary via spectral decomposition. These new discoveries, along with our age estimates for the primary white dwarfs, will serve as valuable benchmark systems for future characterization of ultracool dwarfs. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  2. Abstract We present the discovery of 118 new ultracool dwarf candidates, discovered using a new machine-learning tool, namedSMDET, applied to time-series images from the Wide-field Infrared Survey Explorer. We gathered photometric and astrometric data to estimate each candidate’s spectral type, distance, and tangential velocity. This sample has a photometrically estimated spectral class distribution of 28 M dwarfs, 64 L dwarfs, and 18 T dwarfs. We also identify a T-subdwarf candidate, two extreme T-subdwarf candidates, and two candidate young ultracool dwarfs. Five objects did not have enough photometric data for any estimations to be made. To validate our estimated spectral types, spectra were collected for two objects, yielding confirmed spectral types of T5 (estimated T5) and T3 (estimated T4). Demonstrating the effectiveness of machine-learning tools as a new large-scale discovery technique. 
    more » « less
  3. Abstract We have used the UKIRT Hemisphere Survey combined with the UKIDSS Galactic Cluster Survey, the UKIDSS Galactic Plane Survey, and the CatWISE2020 catalog to search for new substellar members of the nearest open cluster to the Sun, the Hyades. Eight new substellar Hyades candidate members were identified and observed with the Gemini/GNIRS near-infrared spectrograph. All eight objects are confirmed as brown dwarfs with spectral types ranging from L6 to T5, with two objects showing signs of spectral binarity and/or variability. A kinematic analysis demonstrates that all eight new discoveries likely belong to the Hyades cluster, with future radial velocity and parallax measurements needed to confirm their membership. CWISE J042356.23+130414.3, with a spectral type of T5, would be the coldest (Teff≈ 1100 K) and lowest-mass (M≈ 30MJup) free-floating member of the Hyades yet discovered. We further find that high-probability substellar Hyades members from this work and previous studies have redder near-infrared colors than field-age brown dwarfs, potentially due to lower surface gravities and supersolar metallicities. 
    more » « less
  4. Abstract The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (∼200–400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate-resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species, like water, methane, and ammonia; species that trace chemical reactions, like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (Guaranteed Time Observation program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855–0714 (using NIRSpec G395M spectra), which has an effective temperature of ∼264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH3D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH3). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution. 
    more » « less
  5. Abstract We present the discovery of VHS J183135.58−551355.9 (hereafter VHS J1831−5513), an L/T transition dwarf identified as a result of its unusually red near-infrared colors (J−KS= 3.633 ± 0.277 mag;J−W2 = 6.249 ± 0.245 mag) from the VISTA Hemisphere Survey and CatWISE2020 surveys. We obtain low-resolution near-infrared spectroscopy of VHS J1831−5513 using the Magellan Folded port InfraRed Echellette spectrograph to confirm its extremely red nature and assess features sensitive to surface gravity (i.e., youth). Its near-infrared spectrum shows multiple CH4absorption features, indicating an exceptionally low effective temperature for its spectral type. Based on proper-motion measurements from CatWISE2020 and a photometric distance derived from itsKs-band magnitude, we find that VHS J1831−5513 is a likely (∼85% probability) kinematic member of theβPictoris moving group. Future radial velocity and trigonometric parallax measurements will clarify such membership. Follow-up mid-infrared or higher-resolution near-infrared spectroscopy of this object will allow for further investigation as to the cause(s) of its redness, such as youth, clouds, and viewing geometry. 
    more » « less
  6. Abstract After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass distribution within 20 pc, which serves as a constraint on star formation theory at the lowest masses. Unlike objects on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass function must therefore be procured through proxy measurements and theoretical models. We utilize various assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals the most likely mass function. We find that a simple power law ( dN / dM M α ) withα≈ 0.5 is optimal. Additionally, we conclude that the low-mass cutoff for star formation is ≲0.005M. We corroborate the findings of Burgasser, which state that the birthrate has a far lesser impact than the mass function on the form of the temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values ofαthan the constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of very old (8–10 Gyr) brown dwarfs. 
    more » « less
  7. Abstract Recently Gagné et al. suggested that young moving groups with similar kinematic properties could be part of larger dissolving structures. One example was IC 2602 as the core of a group of associations, including its corona (CIC 2602), Tucana-Horologium (THA), and parts of Theia 92. We explore this hypothesis by measuring the rotation periods of 953 objects selected using Gaia DR3 kinematics from IC 2602, CIC 2602, Theia 92, and a newly identified group of stars that bridge IC 2602 and THA. We use Transiting Exoplanet Survey Satellite (TESS) full frame images to measure new rotation periods and combine these with the rotation periods for THA from Popinchalk et al. to compare their rotation period distributions and other youth indicators where available to examine if the groups could be coeval. We find strong agreement between the rotation distributions of IC 2602, CIC 2602, and THA, suggesting a shared age of ∼40 Myr, and which in combination could serve as an example of a typical distribution at this age. Theia 92 does not agree at the same level, and we explore the potential kinematic reasons it does not match the rotation period distribution of the larger groups. Additionally, in our light curve analysis we identify ∼50 potential binaries, as well as four new M dwarf complex rotators that show major morphological changes between TESS cycles. Finally, using the amplitudes of the rotation periods we measured, we find strong agreement with the amplitude–age relation presented in Morris for our 40 Myr groups. 
    more » « less
  8. Abstract We report the discovery of a high-velocity, very low-mass star or brown dwarf whose kinematics suggest it is unbound to the Milky Way. CWISE J124909.08+362116.0 was identified by citizen scientists in the Backyard Worlds: Planet 9 program as a high-proper-motion (μ= 0.″9 yr−1) faint red source. Moderate-resolution spectroscopy with Keck/NIRES reveals it to be a metal-poor early L subdwarf with a large radial velocity (−103 ± 10 km s−1), and its estimated distance of 125 ± 8 pc yields a speed of 456 ± 27 km s−1in the Galactic rest frame, near the local escape velocity for the Milky Way. We explore several potential scenarios for the origin of this source, including ejection from the Galactic center ≳3 Gyr in the past, survival as the mass donor companion to an exploded white dwarf, acceleration through a three-body interaction with a black hole binary in a globular cluster, and accretion from a Milky Way satellite system. CWISE J1249+3621 is the first hypervelocity very low-mass star or brown dwarf to be found and the nearest of all such systems. It may represent a broader population of very high-velocity, low-mass objects that have undergone extreme accelerations. 
    more » « less
  9. Abstract Most brown dwarfs show some level of photometric or spectral variability. However, finding the most variable dwarfs more suited for a thorough variability monitoring campaign remained a challenge until a few years ago with the design of spectral indices to find the most likely L and T dwarfs using their near-infrared (NIR) single-epoch spectrum. In this work, we designed and tested NIR spectral indices to preselect the most likely variable L4–L8 dwarfs, complementing the indices presented by Ashraf et al. and Oliveros-Gomez et al. We used time-resolved NIR Hubble Space Telescope Wide Field Camera 3 spectra of an L6.0 dwarf, LP 261–75b, to design our novel spectral indices. We tested these spectral indices on 75 L4.0–L8.0 NIR SpeX/IRTF spectra, providing 27 new variable candidates. Our indices have a recovery rate of ∼80% and a false negative rate of ∼25%. All the known nonvariable brown dwarfs were found to be nonvariable by our indices. We estimated the variability fraction of our sample to be 51 38 + 4 %, which agrees with the variability fractions provided by Buenzli et al., Radigan et al., and Metchev et al. for L4–L8 dwarfs. These spectral indices may support the future selection of the most likely variable directly imaged exoplanets for studies with the James Webb Space Telescope and as well as the 30 m telescopes. 
    more » « less
  10. Abstract We report direct observational evidence for a latitudinal dependence of dust cloud opacity in ultracool dwarfs, indicating that equatorial latitudes are cloudier than polar latitudes. These results are based on a strong positive correlation between the viewing geometry and the mid-infrared silicate absorption strength in mid-L dwarfs using mid-infrared spectra from the Spitzer Space Telescope and spin axis inclination measurements from available information in the literature. We confirmed that the infrared color anomalies of L dwarfs positively correlate with dust cloud opacity and viewing geometry, where redder objects are inclined equator-on and exhibit more opaque dust clouds, while dwarfs viewed at higher latitudes and with more transparent clouds are bluer. These results show the relevance of viewing geometry to explain the appearance of brown dwarfs and provide insight into the spectral diversity observed in substellar and planetary atmospheres. We also find a hint that dust clouds at similar latitudes may have higher opacity in low-surface gravity dwarfs than in higher-gravity objects. 
    more » « less