skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensitivity and vulnerability to summer heat extremes in major cities of the United States
Abstract Many cities are experiencing increases in extreme heat because of global temperature rise combined with the urban heat island effect. The heterogeneity of urban morphology also leads to fine-scale variability in potential for heat exposure. Yet, how this rise in temperature and local variability together impacts urban residents differently at exposure-relevant scales is still not clear. Here we map the Universal Thermal Climate Index, a more complete indicator of human heat stress at an unprecedentedly fine spatial resolution (1 m), for 14 major cities in the United States using urban microclimate modeling. We examined the different heat exposure levels across different socioeconomic and racial/ethnic groups in these cities, finding that income level is most consistently associated with heat stress. We further conducted scenario simulations for a hypothetical 1 °C increase of air temperature in all cities. Results show that a 1 °C increase would have a substantial impact on human heat stress, with impacts that differ across cities. The results of this study can help us better evaluate the impact of extreme heat on urban residents at decision-relevant scales.  more » « less
Award ID(s):
2314709 2525118
PAR ID:
10533816
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
9
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 094039
Size(s):
Article No. 094039
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extreme heat events are occurring more frequently and with greater intensity due to climate change. They result in increased heat stress to populations causing human health impacts and heat-related deaths. The urban environment can also exacerbate heat stress because of man-made materials and increased population density. Here we investigate the extreme heatwaves in the western U.S. during the summer of 2021. We show the atmospheric scale interactions and spatiotemporal dynamics that contribute to increased temperatures across the region for both urban and rural environments. In 2021, daytime maximum temperatures during heat events in eight major cities were 10–20 °C higher than the 10-year average maximum temperature. We discuss the temperature impacts associated with processes across scales: climate or long-term change, the El Niño–Southern Oscillation, synoptic high-pressure systems, mesoscale ocean/lake breezes, and urban climate (i.e., urban heat islands). Our findings demonstrate the importance of scale interactions impacting extreme heat and the need for holistic approaches in heat mitigation strategies. 
    more » « less
  2. Understanding urban heat exposure dynamics is critical for public health, urban management, and climate change resilience. Near real-time analysis of urban heat enables quick decision-making and timely resource allocation, thereby enhancing the well-being of urban residents, especially during heatwaves or electricity shortages. To serve this purpose, we develop a cyberGIS framework to analyze and visualize human sentiments of heat exposure dynamically based on near real-time location-based social media (LBSM) data. Large volumes and low-cost LBSM data, together with a content analysis algorithm based on natural language processing are used effectively to generate near real-time heat exposure maps from human sentiments on social media at both city and national scales with km spatial resolution and census tract spatial unit. We conducted a case study to visualize and analyze human sentiments of heat exposure in Chicago and the United States in September 2021. Enabled with high-performance computing, dynamic visualization of heat exposure is achieved with fine spatiotemporal scales while heat exposure detected from social media data can be used to understand heat exposure from a human perspective and allow timely responses to extreme heat. 
    more » « less
  3. Urban heat mitigation is a pressing concern for cities. Intense urban heat poses a threat to human health and urban sustainability. Tree planting is one of the most widely employed nature-based heat mitigation methods worldwide. Therefore, city policy makers require knowledge of how much temperature will be reduced by increasing urban tree canopy (UTC). Cooling efficiency (CE), which was been proposed to quantify the magnitude of temperature reduction associated with a 1% increase in UTC, has been primarily investigated at smaller scales previously. However, such small-scale results cannot be used to develop policy at the whole-city scale. This study developed a method that reveals the scaling relations of CE so as to predict its effects at the city scale. CE was found to follow the form of a power law as spatial scale increased from the small analytical units through intermediate size units up to the extent of a whole city. The power law form appeared consistently across cities with different climate backgrounds during summer daylight hours. Furthermore, the power law form was robust within cities under different summer weather conditions. The power-law scaling approach can thus be used to predict CE at the whole-city scale, providing a useful tool for managers to set UTC goals to mitigate extreme urban heat. 
    more » « less
  4. Abstract Extreme heat events are becoming more frequent and intense. In cities, the urban heat island (UHI) can often intensify extreme heat exposure, presenting a public health challenge across vulnerable populations without access to adaptive measures. Here, we explore the impacts of increasing residential air-conditioning (AC) adoption as one such adaptive measure to extreme heat, with New York City (NYC) as a case study. This study uses AC adoption data from NYC Housing and Vacancy Surveys to study impacts to indoor heat exposure, energy demand, and UHI. The Weather Research and Forecasting (WRF) model, coupled with a multilayer building environment parameterization and building energy model (BEP–BEM), is used to perform this analysis. The BEP–BEM schemes are modified to account for partial AC use and used to analyze current and full AC adoption scenarios. A city-scale case study is performed over the summer months of June–August 2018, which includes three different extreme heat events. Simulation results show good agreement with surface weather stations. We show that increasing AC systems to 100% usage across NYC results in a peak energy demand increase of 20%, while increasing UHI on average by 0.42 °C. Results highlight potential trade-offs in extreme heat adaptation strategies for cities, which may be necessary in the context of increasing extreme heat events. 
    more » « less
  5. Abstract. This study investigates the impact of global warming on heat and humidityextremes by analyzing 6 h output from 28 members of the Max PlanckInstitute Grand Ensemble driven by forcing from a 1 % yr−1 CO2 increase. We find that unforced variability drives large changes in regional exposure to extremes in different ensemble members, and these variations are mostly associated with El Niño–Southern Oscillation (ENSO) variability. However, while the unforced variability in the climate can alter the occurrence of extremes regionally, variability within the ensemble decreases significantly as one looks at larger regions or at a global population perspective. This means that, for metrics of extreme heat and humidity analyzed here, forced variability in the climate is more important than the unforced variability at global scales. Lastly, we found that most heat wave metrics will increase significantly between 1.5 and 2.0 ∘C, and that low gross domestic product (GDP) regions show significantly higher risks of facing extreme heat events compared to high GDP regions. Considering the limited economic adaptability of the population to heat extremes, this reinforces the idea that the most severe impacts of climate change may fall mostly on those least capable of adapting. 
    more » « less