skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination of site‐specific nitrogen cycle reaction kinetics allows accurate simulation of in situ nitrogen transformation rates in a large North American estuary
Abstract Nitrogen (N) bioavailability affects phytoplankton growth and primary production in the aquatic environment. N bioavailability is partly determined by biological N cycling processes that either transform N species or remove fixed N. Reliable estimates of their kinetic parameters can help understand the distribution of N cycling processes. However, available estimates of kinetic parameters are often derived from microbial isolates and may not be representative of the natural environment. Observations are particularly lacking in estuarine and coastal waters. We conducted isotope tracer addition incubations to evaluate substrate affinities of nitrification, denitrification and anammox in the Chesapeake Bay water column. The half‐saturation constant for ammonia oxidation ranged from 0.38 to 0.75 μM ammonium, substantially higher than observed in the open oceans. Half‐saturation constants for denitrification—0.92–1.86 μM nitrite or 1.15 μM nitrate—were within the lower end or less than those reported for other aquatic environments and for denitrifier isolates. Interestingly, water column denitrification potential was comparable to that of sedimentary denitrification, highlighting the contribution of the water column to N removal during anoxia. Mostly undetectable anammox rates prevented us from deriving the half‐saturation constants, suggesting a low affinity of anammox. Using these substrate kinetics, we were able to predict in situ N cycling rates and explain the vertical distribution of N nutrient concentrations. Our newly derived substrate kinetics parameters can be useful for improving model representation of N nutrient dynamics in estuarine and coastal waters, which is critical for assessing the ecosystem productivity and function.  more » « less
Award ID(s):
1946516
PAR ID:
10533831
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
69
Issue:
8
ISSN:
0024-3590
Format(s):
Medium: X Size: p. 1757-1768
Size(s):
p. 1757-1768
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Despite long-standing interest in the biogeochemistry of the Santa Barbara Basin (SBB), there are no direct rate measurements of different nitrogen transformation processes. We investigated benthic nitrogen cycling using in situ incubations with 15NO3- addition and quantified the rates of total nitrate (NO3-) uptake, denitrification, anaerobic ammonia oxidation (anammox), N2O production, and dissimilatory nitrate reduction to ammonia (DNRA). Denitrification was the dominant NO3- reduction process, while anammox contributed 0 %–27 % to total NO3- reduction. DNRA accounted for less than half of NO3- reduction except at the deepest station at the center of the SBB where NO3- concentration was lowest. NO3- availability and sediment total organic carbon content appeared to be two key controls on the relative importance of DNRA. The increasing importance of fixed N retention via DNRA relative to fixed N loss as NO3- deficit intensifies suggests a negative feedback loop that potentially contributes to stabilizing the fixed N budget in the SBB. Nitrous oxide (N2O) production as a fraction of total NO3- reduction ranged from 0.2 % to 1.5 %, which was higher than previous reports from nearby borderland basins. A large fraction of NO3- uptake was unaccounted for by NO3- reduction processes, suggesting that intracellular storage may play an important role. Our results indicate that the SBB acts as a strong sink for fixed nitrogen and potentially a net source of N2O to the water column. 
    more » « less
  2. Abstract Removal of biologically available nitrogen (N) by the microbially mediated processes denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. Although few studies have examined temperature responses of denitrification and anammox, previous work suggests that denitrification could become more important than anammox in response to climate warming. To test this hypothesis, we determined whether temperature responses of denitrification and anammox differed in shelf and estuarine sediments from coastal Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was further assessed in a 12‐week laboratory microcosm experiment. Temperature responses, as characterized by thermal optima (Topt) and apparent activation energy (Ea), were determined by measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging from 3 to 59 °C. With a few exceptions,ToptandEaof denitrification and anammox did not differ in Rhode Island sediments over the seasonal cycle. In microcosm sediments,Ea was somewhat lower for anammox compared to denitrification across all treatments. However,Topt did not differ between processes, and neither Ea nor Topt changed with warming or carbon addition. Thus, the two processes behaved similarly in terms of temperature responses, and these responses were not influenced by warming. This led us to reject the hypothesis that anammox is more cold‐adapted than denitrification in our study system. Overall, our study suggests that temperature responses of both processes can be accurately modeled for temperate regions in the future using a single set of parameters, which are likely not to change over the next century as a result of predicted climate warming. We further conclude that climate warming will not directly alter the partitioning of N flow through anammox and denitrification. 
    more » « less
  3. Abstract. Oxygen minimum zones (OMZs), due to their large volumes of perennially deoxygenated waters, are critical regions for understanding how the interplay between anaerobic and aerobic nitrogen (N) cycling microbial pathways affects the marine N budget. Here, we present a suite of measurements of the most significant OMZ N cycling rates, which all involve nitrite (NO2-) as a product, reactant, or intermediate, in the eastern tropical North Pacific (ETNP) OMZ. These measurements and comparisons to data from previously published OMZ cruisespresent additional evidence that NO3- reduction is the predominant OMZ N flux, followed by NO2- oxidation back to NO3-. The combined rates of both of these N recycling processes were observed to be much greater (up to nearly 200 times) thanthe combined rates of the N loss processes of anammox and denitrification, especially in waters near the anoxic–oxic interface. We also showthat NO2- oxidation can occur when O2 is maintained near 1 nM by a continuous-purge system, NO2-oxidation and O2 measurements that further strengthen the case for truly anaerobic NO2- oxidation. We also evaluate thepossibility that NO2- dismutation provides the oxidative power for anaerobic NO2- oxidation. The partitioning ofN loss between anammox and denitrification differed widely from stoichiometric predictions of at most 29 % anammox; in fact,N loss rates at many depths were entirely due to anammox. Our new NO3- reduction, NO2- oxidation, dismutation, andN loss data shed light on many open questions in OMZ N cycling research, especially the possibility of truly anaerobicNO2- oxidation. 
    more » « less
  4. Research on the impact of seawater intrusion on nitrogen (N) cycling in coastal estuarine ecosystems is crucial; however, there is still a lack of relevant research conducted underin-situfield conditions. The effects of elevated salinity on N cycling processes and microbiomes were examinedin situseawater intrusion experiments conducted from 2019 to 2021 in the Nakdong River Estuary (South Korea), where an estuarine dam regulates tidal hydrodynamics. After the opening of the Nakdong Estuary Dam (seawater intrusion event), the density difference between seawater and freshwater resulted in varying degrees of seawater trapping at topographically deep stations. Bottom-water oxygen conditions had been altered in normoxia, hypoxia, and weak hypoxia due to the different degrees of seawater trapping in 2019, 2020, and 2021, respectively. Denitrification mostly dominated the nitrate (NO3-) reduction process, except in 2020 after seawater intrusion. However, denitrification rates decreased because of reduced coupled nitrification after seawater intrusion due to the dissolved oxygen limitation in 2020. Dissimilatory nitrate reduction to ammonium (DNRA) rates immediately increased after seawater intrusion in 2020, replacing denitrification as the dominant pathway in the NO3-reduction process. The enhanced DNRA rate was mainly due to the abundant organic matter associated with seawater invasion and more reducing environment (maybe sulfide enhancement effects) under high seawater-trapping conditions. Denitrification increased in 2021 after seawater intrusion during weak hypoxia; however, DNRA did not change. Small seawater intrusion in 2019 caused no seawater trapping and overall normoxic condition, though a slight shift from denitrification to DNRA was observed. Metagenomic analysis revealed a decrease in overall denitrification-associated genes in response to seawater intrusion in 2019 and 2020, while DNRA-associated gene abundance increased. In 2021 after seawater intrusion, microbial gene abundance associated with denitrification increased, while that of DNRA did not change significantly. These changes in gene abundance align mostly with alterations in nitrogen transformation rates. In summary, ecological change effects in N cycling after the dam opening (N retention or release, that is, eutrophication deterioration or mitigation) depend on the degree of seawater intrusion and the underlying freshwater conditions, which constitute the extent of seawater-trapping. 
    more » « less
  5. Abstract Riparian zones are key ecotones that buffer aquatic ecosystems through removal of nitrogen (N) via processes such as denitrification. However, how dams alter riparian N cycling and buffering capacity is poorly understood. Here, we hypothesized that elevated groundwater and anoxia due to the backup of stream water above milldams may enhance denitrification. We assessed denitrification rates (using denitrification enzyme assays) and potential controlling factors in riparian sediments at various depths upstream and downstream of two relict U.S. mid‐Atlantic milldams. Denitrification was not significantly different between upstream and downstream, although was greater per river km upstream considering deeper and wider geometries. Further, denitrification typically occurred in hydrologically variable shallow sediments where nitrate‐N and organic matter were most concentrated. At depths below 1 m, both denitrification and nitrate‐N decreased while ammonium‐N concentrations substantially increased, indicating suppression of ammonium consumption or dissimilatory nitrate reduction to ammonium. These results suggest that denitrification occurs where dynamic groundwater levels result in higher rates of nitrification and mineralization, while another N process that produces ammonium‐N competes with denitrification for limited nitrate‐N at deeper, more stagnant/poorly mixed depths. Ultimately, while it is unclear whether relict milldams are sources of N, limited denitrification rates indicate that they are not always effective sinks; thus, milldam removal—especially accompanied by removal of ammonium‐N rich legacy sediments—may improve riparian N buffering. 
    more » « less