Abstract We prove that for a GNS-symmetric quantum Markov semigroup, the complete modified logarithmic Sobolev constant is bounded by the inverse of its complete positivity mixing time. For classical Markov semigroups, this gives a short proof that every sub-Laplacian of a Hörmander system on a compact manifold satisfies a modified log-Sobolev inequality uniformly for scalar and matrix-valued functions. For quantum Markov semigroups, we show that the complete modified logarithmic Sobolev constant is comparable to the spectral gap up to the logarithm of the dimension. Such estimates are asymptotically tight for a quantum birth-death process. Our results, along with the consequence of concentration inequalities, are applicable to GNS-symmetric semigroups on general von Neumann algebras.
more »
« less
Graph Hörmander Systems
Abstract This paper extends the Bakry-Émery criterion relating the Ricci curvature and logarithmic Sobolev inequalities to the noncommutative setting. We obtain easily computable complete modified logarithmic Sobolev inequalities of graph Laplacians and Lindblad operators of the corresponding graph Hörmander systems. We develop the anti-transference principle stating that the matrix-valued modified logarithmic Sobolev inequalities of sub-Laplacian operators on a compact Lie group are equivalent to such inequalities of a family of the transferred Lindblad operators with a uniform lower bound.
more »
« less
- PAR ID:
- 10533844
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Annales Henri Poincaré
- Volume:
- 26
- Issue:
- 8
- ISSN:
- 1424-0637
- Format(s):
- Medium: X Size: p. 2683-2736
- Size(s):
- p. 2683-2736
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider sub-Riemannian manifolds which are homogeneous spaces equipped with a sub-Riemannian structure induced by a transitive action by a Lie group. Then the corresponding sub-Laplacian is not an elliptic but a hypoelliptic operator. We study logarithmic Sobolev inequalities with respect to the hypoelliptic heat kernel measure on such spaces. We show that the logarithmic Sobolev constant can be chosen to depend only on the Lie group acting transitively on such a space but the constant is independent of the action of its isotropy group. This approach allows us to track the dependence of the logarithmic Sobolev constant on the geometry of the underlying space, in particular we show that the constant is independent of the dimension of the underlying spaces in several examples.more » « less
-
We introduce a notion called entropic independence that is an entropic analog of spectral notions of high-dimensional expansion. Informally, entropic independence of a background distribution $$\mu$$ on $$k$$-sized subsets of a ground set of elements says that for any (possibly randomly chosen) set $$S$$, the relative entropy of a single element of $$S$$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $$S$$. Entropic independence is the analog of the notion of spectral independence, if one replaces variance by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy nature of spectral analysis of Markov chains on exponential-sized state spaces. In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral independence of a distribution under arbitrary external fields automatically implies entropic independence. We furthermore extend our theory to the case where spectral independence does not hold under arbitrary external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy contraction not for all distributions, but for those in a sufficiently large neighborhood of the stationary distribution. To derive our results, we relate entropic independence to properties of polynomials: $$\mu$$ is entropically independent exactly when a transformed version of the generating polynomial of $$\mu$$ is upper bounded by its linear tangent; this property is implied by concavity of the said transformation, which was shown by prior work to be locally equivalent to spectral independence. We apply our results to obtain (1) tight modified log-Sobolev inequalities and mixing times for multi-step down-up walks on fractionally log-concave distributions, (2) the tight mixing time of $$O(n\log n)$$ for Glauber dynamics on Ising models whose interaction matrix has eigenspectrum lying within an interval of length smaller than $$1$$, improving upon the prior quadratic dependence on $$n$$, and (3) nearly-linear time $$\widetilde O_{\delta}(n)$$ samplers for the hardcore and Ising models on $$n$$-node graphs that have $$\delta$$-relative gap to the tree-uniqueness threshold. In the last application, our bound on the running time does not depend on the maximum degree $$\Delta$$ of the graph, and is therefore optimal even for high-degree graphs, and in fact, is sublinear in the size of the graph for high-degree graphs.more » « less
-
We study the “geometric Ricci curvature lower bound”, introduced previously by Junge, Li and LaRacuente, for a variety of examples including group von Neumann algebras, free orthogonal quantum groups [Formula: see text], [Formula: see text]-deformed Gaussian algebras and quantum tori. In particular, we show that Laplace operator on [Formula: see text] admits a factorization through the Laplace–Beltrami operator on the classical orthogonal group, which establishes the first connection between these two operators. Based on a non-negative curvature condition, we obtain the completely bounded version of the modified log-Sobolev inequalities for the corresponding quantum Markov semigroups on the examples mentioned above. We also prove that the “geometric Ricci curvature lower bound” is stable under tensor products and amalgamated free products. As an application, we obtain a sharp Ricci curvature lower bound for word-length semigroups on free group factors.more » « less
-
We quantify the Sobolev space norm of the Beltrami resolvent \((I- \mu S)^{-1}\), where \(S\) is the Beurling–Ahlfors transform, in terms of the corresponding Sobolev space norm of the dilatation \(\mu\) in the critical and supercritical ranges. Our estimate entails as a consequence quantitative self-improvement inequalities of Caccioppoli type for quasiregular distributions with dilatations in \(W^{1,p}\), \(p \ge 2\). Our proof strategy is then adapted to yield quantitative estimates for the resolvent \((I-\mu S_\Omega)^{-1}\) of the Beltrami equation on a sufficiently regular domain \(\Omega\), with \(\mu\in W^{1,p}(\Omega)\). Here, \(S_\Omega\) is the compression of \(S\) to a domain \(\Omega\). Our proofs do not rely on the compactness or commutator arguments previously employed in related literature. Instead, they leverage the weighted Sobolev estimates for compressions of Calderón–Zygmund operators to domains, recently obtained by the authors, to extend the Astala–Iwaniec–Saksman technique to higher regularities.more » « less
An official website of the United States government
