skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the dark matter halo of NGC 5128 using a discrete dynamical model
Context.As the nearest accessible massive early-type galaxy, NGC 5128 presents an exceptional opportunity to measure dark matter halo parameters for a representative elliptical galaxy. Aims.Here we take advantage of rich new observational datasets of large-radius tracers to perform dynamical modeling of NGC 5128 Methods.We used a discrete axisymmetric anisotropic Jeans approach with a total tracer population of nearly 1800 planetary nebulae, globular clusters, and dwarf satellite galaxies extending to a projected distance of ∼250 kpc from the galaxy center to model the dynamics of NGC 5128. Results.We find that a standard Navarro-Frenk-White (NFW) halo provides an excellent fit to nearly all the data, except for a subset of the planetary nebulae that appear to be out of virial equilibrium. The best-fit dark matter halo has a virial mass ofMvir = 4.4−1.4+2.4 × 1012 M, and NGC 5128 appears to sit below the mean stellar mass–halo mass and globular cluster mass–halo mass relations, which both predict a halo virial mass closer toMvir ∼ 1013 M. The inferred NFW virial concentration iscvir = 5.6−1.6+2.4, which is nominally lower thancvir ∼ 9 predicted from publishedcvir–Mvirrelations, but within the ∼30% scatter found in simulations. The best-fit dark matter halo constitutes only ∼10% of the total mass at one effective radius but ∼50% at five effective radii. The derived halo parameters are consistent within the uncertainties for models with differing tracer populations, anisotropies, and inclinations. Conclusions.Our analysis highlights the value of comprehensive dynamical modeling of nearby galaxies and the importance of using multiple tracers to allow cross-checks for model robustness.  more » « less
Award ID(s):
1813708 2205847
PAR ID:
10533869
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
685
ISSN:
0004-6361
Page Range / eLocation ID:
A132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present new radial velocity measurements from the Magellan and the Anglo-Australian Telescopes for 175 previously known and 121 newly confirmed globular clusters (GCs) around NGC 5128, the nearest accessible massive early-type galaxy atD= 3.8 Mpc. Remarkably, 28 of these newly confirmed GCs are at projected radii > 50 (≳54 kpc), extending to ∼130 kpc, in the outer halo where few GCs had been confirmed in previous work. We identify several subsets of GCs that spatially trace halo substructures that are visible in red giant branch star maps of the galaxy. In some cases, these subsets of GCs are kinematically cold, and may be directly associated with and originate from these specific stellar substructures. From a combined kinematic sample of 645 GCs, we see evidence for coherent rotation at all radii, with a higher rotation amplitude for the metal-rich GC subpopulation. Using the tracer mass estimator, we measure a total enclosed mass of 2.5 ± 0.3 × 1012Mwithin ∼120 kpc, an estimate that will be sharpened with forthcoming dynamical modeling. The combined power of stellar mapping and GC kinematics makes NGC 5128 an ongoing keystone for understanding galaxy assembly at mass scales inaccessible in the Local Group. 
    more » « less
  2. ABSTRACT In this paper, we construct the circular velocity curve of the Milky Way out to ∼30 kpc, providing an updated model of the dark matter density profile. We derive precise parallaxes for 120 309 stars with a data-driven model, using APOGEE DR17 spectra combined with GaiaDR3, 2MASS, and WISE photometry. At outer galactic radii up to 30 kpc, we find a significantly faster decline in the circular velocity curve compared to the inner parts. This decline is better fit with a cored Einasto profile with a slope parameter $$0.91^{+0.04}_{-0.05}$$ than a generalized Navarro–Frenk–White (NFW) profile. The virial mass of the best-fitting dark matter halo profile is only $$1.81^{+0.06}_{-0.05}\times 10^{11}$$ M⊙, significantly lower than what a generalized NFW profile delivers. We present a study of the potential systematics, affecting mainly large radii. Such a low mass for the Galaxy is driven by the functional forms tested, given that it probes beyond our measurements. It is found to be in tension with mass measurements from globular clusters, dwarf satellites, and streams. Our best-fitting profile also lowers the expected dark matter annihilation signal flux from the galactic centre by more than an order of magnitude, compared to an NFW profile-fit. In future work, we will explore profiles with more flexible functional forms to more fully leverage the circular velocity curve and observationally constrain the properties of the Milky Way’s dark matter halo. 
    more » « less
  3. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of CO(2–1) emission from the circumnuclear disks in two early-type galaxies, NGC 1380 and NGC 6861. The disk in each galaxy is highly inclined (i∼ 75°), and the projected velocities of the molecular gas near the galaxy centers are ∼300 km s−1in NGC 1380 and ∼500 km s−1in NGC 6861. We fit thin disk dynamical models to the ALMA data cubes to constrain the masses of the central black holes (BHs). We created host galaxy models using Hubble Space Telescope images for the extended stellar mass distributions and incorporated a range of plausible central dust extinction values. For NGC 1380, our best-fit model yieldsMBH= 1.47 × 108Mwith a ∼40% uncertainty. For NGC 6861, the lack of dynamical tracers within the BH’s sphere of influence due to a central hole in the gas distribution precludes a precise measurement ofMBH. However, our model fits require a value forMBHin the range of (1–3) × 109Min NGC 6861 to reproduce the observations. The BH masses are generally consistent with predictions from local BH–host galaxy scaling relations. Systematic uncertainties associated with dust extinction of the host galaxy light and choice of host galaxy mass model dominate the error budget of both measurements. Despite these limitations, the measurements demonstrate ALMA’s ability to provide constraints on BH masses in cases where the BH’s projected radius of influence is marginally resolved or the gas distribution has a central hole. 
    more » « less
  4. ABSTRACT We present a photometric halo mass estimation technique for local galaxies that enables us to establish the stellar mass–halo mass (SMHM) relation down to stellar masses of 105 M⊙. We find no detectable differences among the SMHM relations of four local galaxy clusters or between the cluster and field relations and we find agreement with extrapolations of previous SMHM relations derived using abundance matching approaches. We fit a power law to our empirical SMHM relation and find that for adopted NFW dark matter profiles and for M* < 109 M⊙, the halo mass is Mh = 1010.35 ± 0.02(M*/108 M⊙)0.63 ± 0.02. The normalization of this relation is susceptible to systematic modelling errors that depend on the adopted dark matter potential and the quoted uncertainties refer to the uncertainties in the median relation. For galaxies with M* < 109 M⊙ that satisfy our selection criteria, the scatter about the fit in Mh, including uncertainties arising from our methodology, is 0.3 dex. Finally, we place lower luminosity Local Group galaxies on the SMHM relationship using the same technique, extending it to M* ∼ 103 M⊙ and suggest that some of these galaxies show evidence for additional mass interior to the effective radius beyond that provided by the standard dark matter profile. If this mass is in the form of a central black hole, the black hole masses are in the range of intermediate mass black holes, 10(5.7 ± 0.6) M⊙, which corresponds to masses of a few percent of Mh, well above values extrapolated from the relationships describing more massive galaxies. 
    more » « less
  5. Abstract We utilize the cosmological volume simulation FIREbox to investigate how a galaxy’s environment influences its size and dark matter content. Our study focuses on approximately 1200 galaxies (886 central and 332 satellite halos) in the low-mass regime, with stellar masses between 106and 109M. We analyze the size–mass relation (r50–M), the inner dark matter mass–stellar mass ( M DM 50 –M) relation, and the halo mass–stellar mass (Mhalo–M) relation. At fixed stellar mass, we find that galaxies experiencing stronger tidal influences, indicated by higher Perturbation Indices (PI > 1) are generally larger and have lower halo masses relative to their counterparts with lower Perturbation Indices (PI < 1). Applying a Random Forest regression model, we show that both the environment (PI) and halo mass (Mhalo) are significant predictors of a galaxy’s relative size and dark matter content. Notably, becauseMhalois also strongly affected by the environment, our findings indicate that environmental conditions not only influence galactic sizes and relative inner dark matter content directly, but also indirectly, through their impact on halo mass. Our results highlight a critical interplay between environmental factors and halo mass in shaping galaxy properties, affirming the environment as a fundamental driver in galaxy formation and evolution. 
    more » « less