The origin of gaps or zoning in the composition of erupted products is critical to understanding how sub-volcanic reservoirs operate. We characterize the compositionally zoned magma that produced the 2053 ± 50 cal. yr BP Paso Puyehue Tephra from the Antillanca Volcanic Complex in the Andean Southern Volcanic Zone (SVZ). The 3.7 km3 Paso Puyehue Tephra is zoned from dacite (69 wt% SiO2) lapilli and ash comprising the lowermost 80% of the deposit that abruptly transitions upward into basaltic andesite scoria (54 wt% SiO2) making up the remaining ~20%. Variations in whole-rock, matrix glass, and mineral compositions through the deposit allow us to estimate pre-eruptive magma storage conditions and to develop a model of how this magma body was generated. Our findings suggest that amphibole-bearing basaltic andesitic magma stored at ~8.0 ± 1.3 km depth fractionally crystallized and cooled from 1048 ± 1.1 to 811 ± 28.6 ◦C under highly oxidizing conditions to produce silicic a melt that upon extraction and rise, pooled at ~6.4 ± 1.2 km depth at temperatures as low as 810 ◦C before eruption. MELTS models suggest that crystallization of a basaltic andesite parent magma with 4 wt% dissolved H2O can produce the dacite under conditions predicted by mineral thermobarometers with phase compositions comparable to those measured in minerals. Pervasive normal zoning at the rims of plagioclase crystals—most pronounced at the transition between dacite and basaltic andesite, and compatible vs. incompatible trace element concentrations, suggest that magma mixing was limited and likely occurred at the interface between the dacitic and basaltic andesitic magmas during ascent within the conduit upon eruption. Compositionally bimodal tephras are increasingly recognized throughout the SVZ with several interpreted to reflect basaltic recharge and mixing into extant rhyolitic reservoirs. In further contrast to other SVZ rhyolitic products, e.g., from the nearby Cord´on Callue and Mocho Choshuenco volcanoes, the Paso Puyehue magma was highly oxidized. This may reflect enhanced delivery of H2O from the subducting plate into the mantle wedge, which in turn may facilitate efficient extraction and separation of buoyant, low-viscosity rhyolitic melt from crystal-rich basaltic andesitic parent magmas and the co-eruption of both end members.
more »
« less
Pleistocene to recent evolution of Mocho-Choshuenco volcano during growth and retreat of the Patagonian Ice Sheet
Mocho-Choshuenco volcano (39.9°S, 72.0°W) produced ∼75 explosive eruptions following retreat of the >1.5-km-thick Patagonian Ice Sheet associated with the local Last Glacial Maximum (LGM, from 35 to 18 ka). Here, we extend this record of volcanic evolution to include pre- and syn-LGM lavas that erupted during the Pleistocene. We establish a long-term chronology of magmatic and volcanic evolution and evaluate the relationship between volcanism and loading/unloading of the Patagonian Ice Sheet via twenty-four 40Ar/39Ar and two 3He age determinations integrated with stratigraphy and whole-rock compositions of lava flows and glass compositions of tephra. Our findings reveal that the edifice is much younger than previously thought and preserves 106 km3 of eruptive products, of which 50% were emplaced immediately following the end of the penultimate glaciation and 20% after the end of the LGM. A period of volcanic inactivity between 37 and 26 ka, when glaciers expanded, was followed by the eruption of incompatible element-rich basaltic andesites. Several of these syn-LGM lavas dated between 26 and 16 ka, which crop out at 1500−1700 m above sea level, show ice contact features that are consistent with emplacement against a 1400- to 1600-m-thick Patagonian Ice Sheet. Small volume dacitic eruptions and two explosive rhyolitic eruptions dominate the volcanic output from 18 to 8 ka, when the Patagonian Ice Sheet began to retreat rapidly. We hypothesize that increased lithostatic loading as the Patagonian Ice Sheet grew prohibited dike propagation, thus stalling the ascent of magma, promoting growth of at least three discrete magma reservoirs, and enhancing minor crustal assimilation to generate incompatible element-rich basaltic andesitic to dacitic magmas that erupted between 26 and 17 ka. From an adjacent reservoir, incompatible element-poor dacites erupted from 17 to 12 ka. These lava flows were followed by the caldera-forming eruption at 11.5 ka of 5.3 km3 of rhyolite from a deeper reservoir atop which a silicic melt lens had formed and expanded. Subsequent eruptions of oxidized dacitic magmas from the Choshuenco cone from 11.5 to 8 ka were followed by andesitic to dacitic eruptions at the more southerly Mocho cone, as well as small flank vent eruptions of basaltic andesite at 2.5 and 0.5 ka. This complex history reflects a multi-reservoir plumbing system beneath Mocho-Choshuenco, which is characterized by depths of magma storage, oxidation states, and trace element compositions that vary over short periods of time (<2 k.y.).
more »
« less
- PAR ID:
- 10533875
- Publisher / Repository:
- Geological Society of America Bulletin
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magmas with matrix glass compositions ranging from basalt to dacite erupted from a series of 24 fissures in the first 2 weeks of the 2018 Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano. Eruption styles ranged from low spattering and fountaining to strombolian activity. Major element trajectories in matrix glasses and melt inclusions hosted by olivine, pyroxene and plagioclase are consistent with variable amounts of fractional crystallization, with incompatible elements (e.g., Cl, F, and H2O) becoming enriched by 4–5 times as melt MgO contents evolve from 6 to 0.5 wt%. The high viscosity and high H2O contents (∼2 wt%) of the dacitic melts erupting at Fissure 17 account for the explosive Strombolian behavior exhibited by this fissure, in contrast to the low fountaining and spattering observed at fissures erupting basaltic to basaltic‐andesite melts. Saturation pressures calculated from melt inclusion CO2‐H2O contents indicate that the magma reservoir(s) supplying these fissures was located at ∼2–3 km depth, which is in agreement with the depth of a dacitic magma body intercepted during drilling in 2005 (∼2.5 km) and a seismically imaged lowVp/Vsanomaly (∼2 km depth). Nb/Y ratios in erupted products are similar to lavas erupted between 1955 and 1960, indicating that melts were stored and underwent variable amounts of crystallization in the LERZ for >60 years before being remobilized by a dike intrusion in 2018. We demonstrate that extensive fractional crystallization generates viscous and volatile‐rich magma with potential for hazardous explosive eruptions, which may be lurking undetected at many ocean island volcanoes.more » « less
-
Volcanic rocks of the Sierra San Francisco (SSF), in northern Baja California Sur, Mexico, record post-subduction magmatism related to slab melting and slab window opening. The range is composed of andesitic and dacitic domes, mafic lavas, and volcaniclastic deposits (debris and block-and-ash-flow, lahar, and fluvial) that constitute the proximal to distal facies of a volcanic field with local eruptive ages that postdate the regional transition from subduction to transtension. Lowest observed volcanic units consist of interbedded and hydrothermally altered mafic lavas, tuff breccias, and andesite/dacite domes. These are overlain by volcaniclastic units and dacite domes that erupted between ~11-10 Ma. Volcaniclastic deposits comprise a section up to 800 m thick, locally flank and dip radially away from domes, and are likely associated with dome collapse. These deposits are unconformably overlain by a series of ~5.5-4.5 Ma Mg-enriched basaltic andesites (bajaites) that typically erupted along NNW-trending normal faults. Low interbedded mafic lavas are chemically similar to syn-subduction lavas (>15 Ma) SE of the SSF, suggesting a typical subduction supraslab mantle source during waning, late Miocene Farallon plate subduction. ~11-10 Ma dacite domes and debris flow blocks display an adakitic geochemical signature, implying an origin involving late Miocene foundering and melting of the edges of the subducted Farallon plate during the opening of a slab window after the 12.3 Ma transition from subduction to transtension. Adakitic rocks of the SSF and the Santa Clara volcanic field 60 km to the SW may constrain the E-W extent of the slab window. The ~5.5-4.5 Ma bajaites display enriched REE and trace element patterns, potentially resulting from the rise of enriched subslab mantle through the slab window and interaction with supraslab mantle, previously metasomatized by slab melts. Thermal pulses associated with Gulf of California rifting may have provided the heat to generate Mg-rich magmas which ascended along rift-related faults, precluding significant crustal contamination or fractionation, and allowing magmas to retain their primitive character. Further analysis will elucidate the timing of slab window development and the post-subduction mantle processes that drove the chemical evolution of SSF magmas.more » « less
-
The Cascade arc has produced a remarkable diversity of volcanic rocks over the Quaternary period. The major stratovolcanoes that define the arc front are dominated by eruptions of andesitic and dacitic intermediate magmas, produced largely by fractionation, melting, assimilation, and mixing within the crust. In addition, relative to many other subduction zones, the arc has produced significant mafic volcanism. These more primitive magmas reveal complexity in mantle wedge dynamics, sources, and magma production processes, and suggest that there are significant differences along the arc in the amount of magma that enters the lower Cascade crust from the underlying mantle.more » « less
-
Frey, Bonnie A.; Kelley, Shari A.; Zeigler, Kate E.; McLemore, Virginia T.; Goff, Fraser; Ulmer-Scholle, Dana S. (Ed.)Monogenetic small-volume basaltic volcanoes are the most abundant subaerial volcanic landforms on Earth but are some of the most poorly understood systems. Their short durations, small volumes, and lack of recurrence make monitoring and hazard assessment difficult. The Zuni-Bandera volcanic field in western New Mexico contains small-volume basaltic centers erupting tholeiitic to alkalic basalts. Evidence shows no correlation of magma composition with eruption age, location, or volumetric output, prompting questions about the influence of magma ascent rates, magma storage conditions, and mantle source characteristics on lava compositions. Here, we present olivine major and minor element mineral chemistry from the 3200-year-old McCartys Flow, the youngest tholeiite basalt in the volcanic field. Olivine displays four phenocryst types with unique textures and major and minor element compositions. Multiple olivine types co-exist at the thin section scale. Major and minor element diffusion at frozen melt–phenocryst interfaces was modeled, revealing magma residence times ranging from 3–9 months. Type 3 olivine phenocrysts require step function initial conditions and record diffusion re-equilibration followed by magma mixing. These profiles indicate the magma resided in the reservoir for 10–15 years and accumulated from multiple batches of mixed magmas less than 10 days before the eruption. Our results show that primitive magmas in small-volume monogenetic volcanoes have complex lithospheric magmatic histories and stored in magma bodies influenced by an open system to develop different local chemical environments.more » « less
An official website of the United States government

