Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M⊙, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here.
more »
« less
Mid-infrared Outbursts in Nearby Galaxies: Nuclear Obscuration and Connections to Hidden Tidal Disruption Events and Changing-look Active Galactic Nuclei
Abstract We study the properties of galaxies hosting mid-infrared outbursts in the context of a catalog of 500,000 galaxies from the Sloan Digital Sky Survey. We find that nuclear obscuration, as inferred by the surrounding dust mass, does not correlate with host galaxy type, stellar properties (e.g., total mass and mean age), or with the extinction of the host galaxy as estimated by the Balmer decrement. This implies that nuclear obscuration may not be able to explain any overrepresentation of tidal disruption events in particular host galaxies. We identify a region in the galaxy catalog parameter space that contains all unobscured tidal disruption events but only harbors ≲11% of the mid-infrared outburst hosts. We find that mid-infrared outburst hosts appear more centrally concentrated and have higher galaxy Sérsic indices than galaxies hosting active galactic nuclei (AGNs) selected using the Baldwin–Phillips–Terlevich classification. We thus conclude that the majority of mid-infrared outbursts are not hidden tidal disruption events but are instead consistent with being obscured AGN that are highly variable, such as changing-look AGN.
more »
« less
- PAR ID:
- 10533881
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 959
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L19
- Subject(s) / Keyword(s):
- .
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tidal disruption events (TDEs) provide a unique opportunity to probe the stellar populations around supermassive black holes (SMBHs). By combining light-curve modeling with spectral line information and knowledge about the stellar populations in the host galaxies, we are able to constrain the properties of the disrupted star for three TDEs. The TDEs in our sample have UV spectra, and measurements of the UV Niiito Ciiiline ratios enabled estimates of the nitrogen-to-carbon abundance ratios for these events. We show that the measured nitrogen line widths are consistent with originating from the disrupted stellar material dispersed by the central SMBH. We find that these nitrogen-to-carbon abundance ratios necessitate the disruption of moderately massive stars (≳1–2M⊙). We determine that these moderately massive disruptions are overrepresented by a factor of ≳102when compared to the overall stellar population of the post-starburst galaxy hosts. This implies that SMBHs are preferentially disrupting higher mass stars, possibly due to ongoing top-heavy star formation in nuclear star clusters or to dynamical mechanisms that preferentially transport higher mass stars to their tidal radii.more » « less
-
Abstract The discovery over the last several decades of low- and moderate-luminosity active galactic nuclei (AGNs) in disk-dominated galaxies—which show no “classical” bulges—suggests that secular mechanisms represent an important growth pathway for supermassive black holes in these systems. We present new follow-up NuSTAR observations of the optically elusive AGNs in two bulgeless galaxies, NGC 4178 and J0851+3926. Galaxy NGC 4178 was originally reported as hosting an AGN based on the detection of [Nev] mid-infrared emission detected by Spitzer, and based on Chandra X-ray imaging, it has since been argued to host either a heavily obscured AGN or a supernova remnant. Galaxy J0851+3926 was originally identified as an AGN based on its Wide-Field Infrared Survey Explorer mid-IR colors, and follow-up near-infrared spectroscopy previously revealed a hidden broad-line region, offering compelling evidence for an optically elusive AGN. Neither AGN is detected within the new NuSTAR imaging, and we derive upper limits on the hard X-ray 10–24 keV fluxes of <7.41 × 10−14and <9.40 × 10−14erg cm−2s−1for the AGNs in NGC 4178 and J0851+3926, respectively. If these nondetections are due to large absorbing columns along the line of sight, the nondetections in NGC 4178 and J0851+3926 could be explained with column densities of log(NH/cm2) > 24.2 and 24.1, respectively. The nature of the nuclear activity in NGC 4178 remains inconclusive; it is plausible that the [Nev] traces a period of higher activity in the past, but that the AGN is relatively quiescent now. The nondetection in J0851+3926 and multiwavelength properties are consistent with the AGN being heavily obscured.more » « less
-
Abstract In the past 5 yr, six X-ray quasi-periodic eruption (QPE) sources have been discovered in the nuclei of nearby galaxies. Their origin remains an open question. We present Multi Unit Spectroscopic Explorer integral field spectroscopy of five QPE host galaxies to characterize their properties. We find that 3/5 galaxies host extended emission-line regions (EELRs) up to 10 kpc in size. The EELRs are photoionized by a nonstellar continuum, but the current nuclear luminosity is insufficient to power the observed emission lines. The EELRs are decoupled from the stars both kinematically and in projected sky position, and the low velocities and velocity dispersions (<100 km s−1and ≲75 km s−1, respectively) are inconsistent with being driven by active galactic nuclei (AGNs) or shocks. The origin of the EELRs is likely a previous phase of nuclear activity. QPE host galaxies share several similarities with tidal disruption event (TDE) hosts, including an overrepresentation of galaxies with strong Balmer absorption and little ongoing star formation, as well as a preference for a short-lived (the typical EELR lifetime is ∼15,000 yr), gas-rich phase where the nucleus has recently faded significantly. This suggests that QPEs and TDEs may share a common formation channel, disfavoring AGN accretion disk instabilities as the origin of QPEs. If QPEs are related to extreme mass ratio inspiral systems (EMRIs), e.g., stellar-mass objects on bound orbits about massive black holes, the high incidence of EELRs and recently faded nuclei could be used to localize the hosts of EMRIs discovered by low-frequency gravitational-wave observatories.more » « less
-
Abstract While it is difficult to observe the first black hole seeds in the early universe, we can study intermediate-mass black holes (IMBHs) in local dwarf galaxies for clues about their origins. In this paper we present a sample of variability-selected active galactic nuclei (AGN) in dwarf galaxies using optical photometry from the Zwicky Transient Facility (ZTF) and forward-modeled mid-IR photometry of time-resolved Wide-field Infrared Survey Explorer (WISE) co-added images. We found that 44 out of 25,714 dwarf galaxies had optically variable AGN candidates and 148 out of 79,879 dwarf galaxies had mid-IR variable AGN candidates, corresponding to active fractions of 0.17% ± 0.03% and 0.19% ± 0.02%, respectively. We found that spectroscopic approaches to AGN identification would have missed 81% of our ZTF IMBH candidates and 69% of our WISE IMBH candidates. Only nine candidates have been detected previously in radio, X-ray, and variability searches for dwarf galaxy AGN. The ZTF and WISE dwarf galaxy AGN with broad Balmer lines have virial masses of 10 5 M ⊙ < M BH < 10 7 M ⊙ , but for the rest of the sample, BH masses predicted from host galaxy mass range between 10 5.2 M ⊙ < M BH < 10 7.25 M ⊙ . We found that only 5 of 152 previously reported variability-selected AGN candidates from the Palomar Transient Factory in common with our parent sample were variable in ZTF. We also determined a nuclear supernova fraction of 0.05% ± 0.01% yr −1 for dwarf galaxies in ZTF. Our ZTF and WISE IMBH candidates show the promise of variability searches for the discovery of otherwise hidden low-mass AGN.more » « less
An official website of the United States government

