Abstract Planetary engulfment events have long been proposed as a lithium (Li) enrichment mechanism contributing to the population of Li-rich giants ( A (Li) ≥ 1.5 dex). Using MESA stellar models and A (Li) abundance measurements obtained by the GALAH survey, we calculate the strength and observability of the surface Li enrichment signature produced by the engulfment of a hot Jupiter (HJ). We consider solar-metallicity stars in the mass range of 1–2 M ⊙ and the Li supplied by a HJ of 1.0 M J . We explore engulfment events that occur near the main-sequence turn-off (MSTO) and out to orbital separations of R ⋆ ∼ 0.1 au = 22 R ⊙ . We map our results onto the Hertzsprung–Russell Diagram, revealing the statistical significance and survival time of Li enrichment. We identify the parameter space of masses and evolutionary phases where the engulfment of a HJ can lead to Li enrichment signatures at a 5 σ confidence level and with meteoritic abundance strengths. The most compelling strengths and survival times of engulfment-derived Li enrichment are found among host stars of 1.4 M ⊙ near the MSTO. Our calculations indicate that planetary engulfment is not a viable enrichment pathway for stars that have evolved beyond the subgiant branch. For these sources, observed Li enhancements are likely to be produced by other mechanisms, such as the Cameron–Fowler process or the accretion of material from an asymptotic giant branch companion. Our results do not account for second-order effects, such as extra mixing processes, which can further dilute Li enrichment signatures.
more »
« less
Reproducibility software for Yarza et al. 2022
Software to reproduce the results of Yarza et al. 2022 (accepted for publication in ApJ). See https://codeberg.org/ryarza/planetary-engulfment-hydro (or the GitHub mirror at https://github.com/ryarza/planetary-engulfment-hydro) for the Git repository this upload is derived from. For the associated data, see 10.5281/zenodo.6371752.
more »
« less
- Award ID(s):
- 2150255
- PAR ID:
- 10533884
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- GNU General Public License v3.0 or later; Open Access
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The engulfment of substellar bodies (SBs) such as brown dwarfs and planets has been invoked as a possible explanation for the presence of SBs orbiting subdwarfs and white dwarfs, rapidly rotating giants, and lithium-rich giants. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an SB engulfed in a stellar envelope. We model the SB as a rigid body with a reflective boundary because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory during engulfment. We find that SB engulfment can increase the stellar luminosity of a 1M⊙ star by up to a few orders of magnitude for timescales of up to a few thousand years when the star is ≈10R⊙ and up to a few decades at the tip of the red giant branch. We find that no SBs can eject the envelope of a 1M⊙ star before it evolves to ≈10R⊙ . In contrast, SBs as small as ≈10MJup can eject the envelope at the tip of the red giant branch, shrinking their orbits by several orders of magnitude in the process. The numerical framework we introduce here can be used to study the dynamics of planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB.more » « less
-
The engulfment of substellar bodies (SBs) such as brown dwarfs and planets has been invoked as a possible explanation for the presence of SBs orbiting subdwarfs and white dwarfs, rapidly rotating giants, and lithium-rich giants. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an SB engulfed in a stellar envelope. We model the SB as a rigid body with a reflective boundary because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory during engulfment. We find that SB engulfment can increase the stellar luminosity of a 1M⊙ star by up to a few orders of magnitude for timescales of up to a few thousand years when the star is ≈10R⊙ and up to a few decades at the tip of the red giant branch. We find that no SBs can eject the envelope of a 1M⊙ star before it evolves to ≈10R⊙ . In contrast, SBs as small as ≈10MJup can eject the envelope at the tip of the red giant branch, shrinking their orbits by several orders of magnitude in the process. The numerical framework we introduce here can be used to study the dynamics of planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB.more » « less
-
Abstract Planetary awareness has become synonymous with awareness of large-scale temporal, geographic, and geologic events. Given the scalar multiplicities and instabilities of life on earth, concepts such as planetarity, the Anthropocene, and even the global have provided analytic reprieve. They name that which is difficult to objectify: the geographic and historical vastness of geological presence. But those concepts grow from knowledge habits inherited from imperial and Cold War logics and can presume the existence of an all-encompassing observer who can grasp the unity of the planet as such. This article explores alternative assumptions. It asks how other practices of the earth deal with planetary scales of sense-making. It conceptualizes those practices as forms of casual planetarity that, instead of drawing on preexisting scales such as the planet or the Anthropocene, produce senses of closeness and/or distance between everyday life and the geological implications of human presence. It follows the work of geologists in Costa Rica who rely on a 3D physical model to bring about scalar oscillations that connect human experiences with the vastness of underground worlds. This association is made possible by focusing on the movement of water as a hydro-geo-social choreography of everyday life. The article shows how the resonant power of the 3D model geologists use to enact these choreographies opens pathways for people to come to terms with their geological presence without having to see the planet as a whole or presume the capacity for total observation.more » « less
-
Forecasting hurricanes is critically important for mitigating their devastating impacts caused by wind damage, storm surges, and flooding. Despite remarkable advancements in numerical weather prediction (NWP) models, such as the Weather Research and Forecasting (WRF) model, accurate hurricane forecasts remain challenging likely due to inaccurate physical parameterizations of complex dynamics of these storms. One major issue of these models is related to their Planetary Boundary Layer (PBL) schemes, which are not typically designed for hurricane flows with strong rotation. Previous studies have shown that the existing PBL schemes of hurricane simulations are often overly dissipative, leading to underestimations of the storm intensity (Matak and Momen 2023; Romdhani et al. 2022). Our recent research (Khondaker and Momen 2024) demonstrated that reducing diffusion in these models improved the hurricane’s intensity and size forecasts by more than ~30% on average in four considered major hurricanes. This reduced diffusion is due to the strong rotational nature of hurricanes, which suppresses turbulence and produces smaller eddies compared to regular PBLs (Momen et al. 2021). While prior studies showed that decreasing the vertical diffusion significantly improves major hurricane intensity forecasts, they mostly relied on simplified and often invariable adjustments of vertical diffusion such as multiplying it by a constant coefficient. The objective of this study is to address this issue by introducing a rotation-based variable adjustment of diffusion to account for the strong rotational nature of tropical cyclone (TC) dynamics. To this end, we will present multiple real strong and weak hurricane simulations using the Advanced Research WRF (ARW) model in the US. We modified the vertical eddy diffusivity based on the relative vorticity to accommodate the rotational dynamics of TCs in PBL schemes. While the default model significantly underpredicts hurricane intensity, our new adjustments outperform the default schemes for these strong hurricanes (see, e.g., attached fig. a), with notable improvements in track and minimum sea level pressure accuracy. This modification also remarkably increases the inflow in hurricanes compared to default models and leads to the intensification of the TC vortex (see, e.g., attached fig. b,c). Our newly adjusted model matched more closely with dropsonde, and satellite observations compared to the default WRF’s PBL schemes. These modifications to the PBL schemes make them more physics-based adjustments compared to previous treatments, offering valuable insights for improving hurricane forecasts in NWP models. References: Khondaker, M. H., and M. Momen, 2024: Improving hurricane intensity and streamflow forecasts in coupled hydro-meteorological simulations by analyzing precipitation and boundary layer schemes. J Hydrometeorol, https://doi.org/10.1175/JHM-D-23-0153.1. Matak, L., and M. Momen, 2023: The Role of Vertical Diffusion Parameterizations in the Dynamics and Accuracy of Simulated Intensifying Hurricanes. Boundary Layer Meteorology, https://doi.org/10.1007/s10546-023-00818-w. Momen, M., M. B. Parlange, and M. G. Giometto, 2021: Scrambling and Reorientation of Classical Atmospheric Boundary Layer Turbulence in Hurricane Winds. Geophysical Research Letters, 48, https://doi.org/10.1029/2020GL091695. Romdhani, O., J. A. Zhang, and M. Momen, 2022: Characterizing the Impacts of Turbulence Closures on Real Hurricane Forecasts: A Comprehensive Joint Assessment of Grid Resolution, Horizontal Turbulence Models, and Horizontal Mixing Length. Journal of Advanced Modeling Earth System, 14, https://doi.org/10.1029/2021ms002796.more » « less
An official website of the United States government
