CompressedLUT github Lookup tables are widely used in hardware applications to store arrays of constant values. They can be directly used to evaluate nonlinear functions or used as a part of other approximate methods (e.g., piecewise linear approximation and bipartite tables) to compute such functions. CompressedLUT is a tool for lossless compression of lookup tables and generation of their hardware files in Verilog and C++ for RTL and HLS designs. CompressedLUT has been developed as a part of the following publication. Please refer to it for more information. Alireza Khataei and Kia Bazargan. 2024. CompressedLUT: An Open Source Tool for Lossless Compression of Lookup Tables for Function Evaluation and Beyond. In Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA ’24), March 3–5, 2024, Monterey, CA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3626202.3637575
more »
« less
CompressedLUT: An Open Source Tool for Lossless Compression of Lookup Tables for Function Evaluation and Beyond
Lookup tables are widely used in hardware to store arrays of constant values. For instance, complex mathematical functions in hardware are typically implemented through table-based methods such as plain tabulation, piecewise linear approximation, and bipartite or multipartite table methods, which primarily rely on lookup tables to evaluate the functions. Storing extensive tables of constant values, however, can lead to excessive hardware costs in resource-constrained edge devices such as FPGAs. In this paper, we propose a method, called CompressedLUT, as a lossless compression scheme to compress arrays of arbitrary data, implemented as lookup tables. Our method exploits decomposition, self-similarities, higher-bit compression, and multilevel compression techniques to maximize table size savings with no accuracy loss. CompressedLUT uses addition and arithmetic right shift beside several small lookup tables to retrieve original data during the decoding phase. Using such cost-effective elements helps our method use low area and deliver high throughput. For evaluation purposes, we compressed a number of different lookup tables, either obtained by direct tabulation of 12-bit elementary functions or generated by other table-based methods for approximating functions at higher resolutions, such as multipartite table method at 24-bit, piecewise polynomial approximation method at 36-bit, and hls4ml library at 18-bit resolutions. We implemented the compressed tables on FPGAs using HLS to show the efficiency of our method in terms of hardware costs compared to previous works. Our method demonstrated 60% table size compression and achieved 2.33 times higher throughput per slice than conventional implementations on average. In comparison, previous TwoTable and LDTC works compressed the lookup tables on average by 33% and 37%, which resulted in 1.63 and 1.29 times higher throughput than the conventional implementations, respectively. CompressedLUT is available as an open source tool.
more »
« less
- Award ID(s):
- 2016390
- PAR ID:
- 10533915
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400704185
- Page Range / eLocation ID:
- 2 to 11
- Format(s):
- Medium: X
- Location:
- Monterey CA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unary computing is a relatively new method for implementing arbitrary nonlinear functions that uses unpacked thermometer number encoding, enabling much lower hardware costs. In its original form, unary computing provides no trade-off between accuracy and hardware cost. In this work, we propose a novel self-similarity-based method to optimize the previous hybrid binary-unary work and provide it with the trade-off between accuracy and hardware cost by introducing controlled levels of approximation. Looking for self-similarity between different parts of a function allows us to implement a very small subset of core unique subfunctions and derive the rest of the subfunctions from this core using simple linear transformations. We compare our method to previous works such as FloPoCo-LUT (lookup table), HBU (hybrid binary-unary) and FloPoCo-PPA (piecewise polynomial approximation) on several 8–12-bit nonlinear functions including Log, Exp, Sigmoid, GELU, Sin, and Sqr, which are frequently used in neural networks and image processing applications. The area × delay hardware cost of our method is on average 32%–60% better than previous methods in both exact and approximate implementations. We also extend our method to multivariate nonlinear functions and show on average 78%–92% improvement over previous work.more » « less
-
Unary computing is a relatively new method for implementing non-linear functions using few hardware resources compared to binary computing. In its original form, unary computing provides no trade-off between accuracy and hardware cost. In this work, we propose a novel self-similarity-based method to optimize the previous hybrid binary-unary method and provide it with the trade-off between accuracy and hardware cost by introducing controlled levels of approximation. Given a target maximum error, our method breaks a function into sub-functions and tries to find the minimum set of unique sub-functions that can derive all the other ones through trivial bit-wise transformations. We compare our method to previous works such as HBU (hybrid binary-unary) and FloPoCo-PPA (piece-wise polynomial approximation) on a number of non-linear functions including Log, Exp, Sigmoid, GELU, Sin, and Sqr, which are used in neural networks and image processing applications. Without any loss of accuracy, our method can improve the area-delay-product hardware cost of HBU on average by 7% at 8-bit, 20% at 10-bit, and 35% at 12-bit resolutions. Given the approximation of the least significant bit, our method reduces the hardware cost of HBU on average by 21% at 8-bit, 49% at 10-bit, and 60% at 12-bit resolutions, and using the same error budget as given to FloPoCo-PPA, it reduces the hardware cost of FloPoCo-PPA on average by 79% at 8-bit, 58% at 10-bit, and 9% at 12-bit resolutions. We finally show the benefits of our method by implementing a 10-bit homomorphic filter, which is used in image processing applications. Our method can implement the filter with no quality loss at lower hardware cost than what the previous approximate and exact methods can achieve.more » « less
-
Accelerating machine learning inference has been an active research area in recent years. In this context, field-programmable gate arrays (FPGAs) have demonstrated compelling performance by providing massive parallelism in deep neural networks (DNNs). Neural networks (NNs) are computationally intensive during inference, as they require massive amounts of multiplication and addition, which makes their implementations costly. Numerous studies have recently addressed this challenge to some extent using a combination of sparsity induction, quantization, and transformation of neurons or sub-networks into lookup tables (LUTs) on FPGAs. Gradient boosted decision trees (GBDTs) are a high-accuracy alternative to DNNs in a wide range of regression and classification tasks, particularly for tabular datasets. The basic building block of GBDTs is a decision tree, which resembles the structure of binary decision diagrams. FPGA design flows are heavily optimized to implement such a structure efficiently. In addition to decision trees, GBDTs perform simple operations during inference, including comparison and addition. We present TreeLUT as an open-source tool for implementing GBDTs using an efficient quantization scheme, hardware architecture, and pipelining strategy. It primarily utilizes LUTs with no BRAMs or DSPs on FPGAs, resulting in high efficiency. We show the effectiveness of TreeLUT using multiple classification datasets, commonly used to evaluate ultra-low area and latency architectures. Using these benchmarks, we compare our implementation results with existing DNN and GBDT methods, such as DWN, PolyLUT-Add, NeuraLUT, LogicNets, FINN, hls4ml, and others. Our results show that TreeLUT significantly improves hardware utilization, latency, and throughput at competitive accuracy compared to previous works. For instance, it achieves an accuracy of around 97% on the MNIST dataset while delivering around 4 to 101 times lower hardware cost in terms of area-delay product than recent LUT-based NNs.more » « less
-
As cloud computing continues to gain widespread adoption, safeguarding the confidentiality of data entrusted to third-party cloud service providers becomes a critical concern. While traditional encryption methods offer protection for data at rest and in transit, they fall short when it comes to where it matters the most, i.e., during data processing. To address this limitation, we present HELM, a framework for privacy-preserving data processing using homomorphic encryption. HELM automatically transforms arbitrary programs expressed in a Hardware Description Language (HDL), such as Verilog, into equivalent homomorphic circuits, which can then be efficiently evaluated using encrypted inputs. HELM features three modes of encrypted evaluation: a) a gate mode that consists of Boolean gates, b) a small-precision lookup table mode which significantly reduces the size of the circuit by combining multiple gates into lookup tables, and c) a high-precision lookup table mode tuned for multi-bit arithmetic evaluations. Finally, HELM introduces a scheduler that leverages the parallelism inherent in arithmetic and Boolean circuits to efficiently evaluate encrypted programs. We evaluate HELM with the ISCAS'85 and ISCAS'89 benchmark suites, as well as real-world applications such as image filtering and neural network inference. In our experimental results, we report that HELM can outperform prior works by up to 65x.more » « less
An official website of the United States government

