skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New alleles of nlp-2, nlp-22, and nlp-23 demonstrate that they are dispensable for stress-induced sleep in C. elegans
Sleep is ancient and genetically conserved across phylogeny. Neuropeptide signaling plays a fundamental role in the regulation of sleep for mammals, fish, and invertebrates like Caenorhabditis elegans. Developmentally timed-sleep and stress-induced sleep of C. elegans are controlled by distinct and overlapping neuropeptide pathways. The RPamide neuropeptides nlp-2, nlp-22, and nlp-23, play antagonistic roles during the regulation of developmentally-timed sleep, however, their role in stress-induced sleep has not been explored. These genes are linked on the X chromosome, which has made genetic analyses challenging. Here we used CRISPR to generate new alleles of nlp-22 and nlp-23, nlp-22;nlp-23 double mutants, and nlp-2;nlp-22;nlp-23 triple mutants. Confirming previous studies, we find that nlp-22 is required for developmentally-timed sleep, and show that nlp-23 is also required. However, all three genes are dispensable for stress-induced sleep.  more » « less
Award ID(s):
1845020
PAR ID:
10533959
Author(s) / Creator(s):
; ;
Publisher / Repository:
microPublication Biology
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans. 
    more » « less
  2. The anticancer drug Gefitinib is a tyrosine kinase inhibitor with selectivity for the Epidermal Growth Factor Receptor (EGFR/ErbB1). As the C. elegans EGF receptor LET-23 shares notable structural homology over its kinase domain with human EGFR, we wished to examine whether Gefitinib treatment can interfere with LET-23-dependent processes. We show that Gefitinib disrupts C. elegans stress-induced sleep (SIS) but does not impact EGF overexpression-induced sleep nor vulva induction. These findings indicate that Gefitinib does not interfere with LET-23 signaling and impairs SIS through an off-target mechanism. 
    more » « less
  3. Across species, Epidermal Growth Factor (EGF) family ligands and their receptors participate in developmental and physiological cell-cell signaling events. C. elegans possesses a single EGF receptor, LET-23/EGFR, and two characterized EGF ligands. LIN-3/EGF is well-known for its role in vulval induction, and SISS-1/EGF mediates stress-induced sleep. The C. elegans genome harbors another predicted EGF family member, igeg-2, which has not been characterized. To determine if IGEG-2 is a functional EGFR ligand, we examined whether it can activate known LET-23-dependent processes. We found that ubiquitous overexpression of IGEG-2 promotes both vulval induction and sleep, indicating that it is a functional EGF family ligand. The endogenous role of IGEG-2 remains unknown. 
    more » « less
  4. Sleep is a reversible state, characterized by the inhibition of periodic behaviors that occur during waking hours. Caenorhabditis elegans demonstrates stress-induced sleep following exposure to environmental stressors, like noxious heat or ultraviolet irradiation. During this time, animals inhibit movement, feeding, and defecation, behavioral quiescence largely controlled by neuropeptide signaling from the ALA and RIS sleep interneurons. Here, we tested whether egg retention and/or production which occurs during suboptimal environmental conditions, is regulated by the ALA and/or RIS, or other neuropeptides. We find that during stress-induced sleep, worms reduce egg-laying behavior and egg production (i.e., fertility). While the behavior is modestly modified in the absence of the ALA and RIS, as well as some neuropeptides, fertility is regulated by other mechanisms. 
    more » « less
  5. Abstract Gene regulation in changing environments is critical for maintaining homeostasis. Some animals undergo a stress-resistant diapause stage to withstand harsh environmental conditions encountered during development. MicroRNAs are one mechanism for regulating gene expression during and after diapause. MicroRNAs downregulate target genes posttranscriptionally through the activity of the microRNA-induced silencing complex. Argonaute is the core microRNA-induced silencing complex protein that binds to both the microRNA and to other microRNA-induced silencing complex proteins. The 2 major microRNA Argonautes in the Caenorhabditis elegans soma are ALG-1 and ALG-2, which function partially redundantly. Loss of alg-1 [alg-1(0)] causes penetrant developmental phenotypes including vulval defects and the reiteration of larval cell programs in hypodermal cells. However, these phenotypes are essentially absent if alg-1(0) animals undergo a diapause stage called dauer. Levels of the relevant microRNAs are not higher during or after dauer, suggesting that activity of the microRNA-induced silencing complex may be enhanced in this context. To identify genes that are required for alg-1(0) mutants to develop without vulval defects after dauer, we performed an RNAi screen of genes encoding conserved kinases. We focused on kinases because of their known role in modulating microRNA-induced silencing complex activity. We found RNAi knockdown of 4 kinase-encoding genes, air-2, bub-1, chk-1, and nekl-3, caused vulval defects and reiterative phenotypes in alg-1(0) mutants after dauer, and that these defects were more penetrant in an alg-1(0) background than in wild type. Our results implicate these kinases as potential regulators of microRNA-induced silencing complex activity during postdauer development in C. elegans. 
    more » « less