Sleep is ancient and genetically conserved across phylogeny. Neuropeptide signaling plays a fundamental role in the regulation of sleep for mammals, fish, and invertebrates like Caenorhabditis elegans. Developmentally timed-sleep and stress-induced sleep of C. elegans are controlled by distinct and overlapping neuropeptide pathways. The RPamide neuropeptides nlp-2, nlp-22, and nlp-23, play antagonistic roles during the regulation of developmentally-timed sleep, however, their role in stress-induced sleep has not been explored. These genes are linked on the X chromosome, which has made genetic analyses challenging. Here we used CRISPR to generate new alleles of nlp-22 and nlp-23, nlp-22;nlp-23 double mutants, and nlp-2;nlp-22;nlp-23 triple mutants. Confirming previous studies, we find that nlp-22 is required for developmentally-timed sleep, and show that nlp-23 is also required. However, all three genes are dispensable for stress-induced sleep.
more »
« less
This content will become publicly available on January 1, 2026
Egg laying during stress-induced sleep of Caenorhabditis elegans is reduced due to behavioral quiescence and fertility defects
Sleep is a reversible state, characterized by the inhibition of periodic behaviors that occur during waking hours. Caenorhabditis elegans demonstrates stress-induced sleep following exposure to environmental stressors, like noxious heat or ultraviolet irradiation. During this time, animals inhibit movement, feeding, and defecation, behavioral quiescence largely controlled by neuropeptide signaling from the ALA and RIS sleep interneurons. Here, we tested whether egg retention and/or production which occurs during suboptimal environmental conditions, is regulated by the ALA and/or RIS, or other neuropeptides. We find that during stress-induced sleep, worms reduce egg-laying behavior and egg production (i.e., fertility). While the behavior is modestly modified in the absence of the ALA and RIS, as well as some neuropeptides, fertility is regulated by other mechanisms.
more »
« less
- Award ID(s):
- 1845020
- PAR ID:
- 10616899
- Publisher / Repository:
- microPublication Biology
- Date Published:
- Journal Name:
- microPublication biology
- Volume:
- 2025
- ISSN:
- 2578-9430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans.more » « less
-
ABSTRACT Gonadal sex steroid hormones are well-studied modulators of reproductive physiology and behavior. Recent behavioral endocrinology research has focused on how the brain dynamically responds to – and may even produce – sex steroids, but the gonadal tissues that primarily release these hormones receive much less attention as a potential mediator of behavioral variation. This Commentary revisits mechanisms by which the reproductive hypothalamic–pituitary–gonadal (HPG) axis can be modulated specifically at the gonadal level. These mechanisms include those that may allow the gonad to be regulated independently of the HPG axis, such as receptors for non-HPG hormones, neural inputs and local production of conventional ‘neuropeptides'. Here, I highlight studies that examine variation in these gonadal mechanisms in diverse taxa, with an emphasis on recent transcriptomic work. I then outline how future work can establish functional roles of gonadal mechanisms in reproductive behavior and evaluate gonad responsiveness to environmental cues. When integrated with neural mechanisms, further investigation of gonadal hormone regulation can yield new insight into the control and evolution of steroid-mediated traits, including behavior.more » « less
-
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode wormCaenorhabditis elegans, four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying. We have previously shown uv1 cells are mechanically deformed during egg laying, driving uv1 Ca2+transients. However, whether egg-laying circuit activity, vulval opening, and/or egg release triggered uv1 Ca2+activity was unclear. Here, we show uv1 responds directly to mechanical activation. Optogenetic vulval muscle stimulation triggers uv1 Ca2+activity following muscle contraction even in sterile animals. Direct mechanical prodding with a glass probe placed against the worm cuticle triggers robust uv1 Ca2+activity similar to that seen during egg laying. Direct mechanical activation of uv1 cells does not require other cells in the egg-laying circuit, synaptic or peptidergic neurotransmission, or transient receptor potential vanilloid and Piezo channels. EGL-19 L-type Ca2+channels, but not P/Q/N-type or ryanodine receptor Ca2+channels, promote uv1 Ca2+activity following mechanical activation. L-type channels also facilitate the coordinated activation of uv1 cells across the vulva, suggesting mechanical stimulation of one uv1 cell cross-activates the other. Our findings show how neuroendocrine cells like uv1 report on the mechanics of tissue deformation and muscle contraction, facilitating feedback to local circuits to coordinate behavior.more » « less
-
The anticancer drug Gefitinib is a tyrosine kinase inhibitor with selectivity for the Epidermal Growth Factor Receptor (EGFR/ErbB1). As the C. elegans EGF receptor LET-23 shares notable structural homology over its kinase domain with human EGFR, we wished to examine whether Gefitinib treatment can interfere with LET-23-dependent processes. We show that Gefitinib disrupts C. elegans stress-induced sleep (SIS) but does not impact EGF overexpression-induced sleep nor vulva induction. These findings indicate that Gefitinib does not interfere with LET-23 signaling and impairs SIS through an off-target mechanism.more » « less
An official website of the United States government
