skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficiency of solar microflares in accelerating electrons when rooted near a Sunspot
The spectral shape of the X-ray emission in solar flares varies with the event size, with small flares generally exhibiting softer spectra than large events, indicative of a relatively lower number of accelerated electrons at higher energies. We investigate two microflares of GOES classes A9 and C1 (after background subtraction) observed by STIX onboard Solar Orbiter with exceptionally strong nonthermal emission. We complement the hard X-ray imaging and spectral analysis by STIX with co-temporal observations in the (E)UV and visual range by AIA and HMI to investigate what makes these microflares so efficient in high-energy particle acceleration. We made a preselection of events in the STIX flare catalog based on the ratio of the thermal to nonthermal quicklook X-ray emission. The STIX spectrogram science data were used to perform spectral fitting to identify the non-thermal and thermal components. The STIX X-ray images were reconstructed to analyze the spatial distribution of the precipitating electrons and the hard X-ray emission they produce. The EUV images from SDO/AIA and SDO/HMI LOS magnetograms were analyzed to better understand the magnetic environment and the chromospheric and coronal response. For the A9 event, EOVSA microwave observations were available, allowing for image reconstruction in the radio domain. We performed case studies of two microflares observed by STIX on October 11, 2021 and November 10, 2022, which showed unusually hard microflare X-ray spectra with power-law indices of the electron flux distributions of $ 0.25)$ and $ 0.23),$ during their non-thermal peaks and photon energies up to 76\,keV and 50\,keV,\,respectively. For both events under study, we found that one footpoint is located within a sunspot covering areas with mean magnetic flux densities in excess of 1500\,G, suggesting that the hard electron spectra are caused by the strong magnetic fields the flare loops are rooted in. Additionally, we revisited a previously published unusually hard RHESSI microflare and found that in this event, there was also one flare kernel located within a sunspot, which corroborates the result from the two hard STIX microflares under study in this work. The characteristics of the strong photospheric magnetic fields inside the sunspot umbrae and penumbrae where flare loops are rooted play an important role in the generation of exceptionally hard X-ray spectra in these microflares.  more » « less
Award ID(s):
2130832
PAR ID:
10533985
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
ISSN:
0004-6361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supervised Machine Learning (ML) models for solar flare prediction rely on accurate labels for a given input data set, commonly obtained from the GOES/XRS X-ray flare catalog. With increasing interest in utilizing ultraviolet (UV) and extreme ultraviolet (EUV) image data as input to these models, we seek to understand if flaring activity can be defined and quantified using EUV data alone. This would allow us to move away from the GOES single pixel measurement definition of flares and use the same data we use for flare prediction for label creation. In this work, we present a Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA)-based flare catalog covering flare of GOES X-ray magnitudes C, M and X from 2010 to 2017. We use active region (AR) cutouts of full disk AIA images to match the corresponding SDO/Helioseismic and Magnetic Imager (HMI) SHARPS (Space weather HMI Active Region Patches) that have been extensively used in ML flare prediction studies, thus allowing for labeling of AR number as well as flare magnitude and timing. Flare start, peak, and end times are defined using a peak-finding algorithm on AIA time series data obtained by summing the intensity across the AIA cutouts. An extremely randomized trees (ERT) regression model is used to map SDO/AIA flare magnitudes to GOES X-ray magnitude, achieving a low-variance regression. We find an accurate overlap on 85% of M/X flares between our resulting AIA catalog and the GOES flare catalog. However, we also discover a number of large flares unrecorded or mislabeled in the GOES catalog. 
    more » « less
  2. ABSTRACT Microflares are energetically smaller versions of solar flares, demonstrating the same processes of plasma heating and particle acceleration. However, it remains unclear down to what energy scales this impulsive energy release continues, which has implications for how the solar atmosphere is heated. The heating and particle acceleration in microflares can be studied through their X-ray emission, finding predominantly thermal emission at lower energies; however, at higher energies it can be difficult to distinguish whether the emission is due to hotter plasma and/or accelerated electrons. We present the first application of nested sampling to solar flare X-ray spectra, an approach that provides a quantitative degree of confidence for one model over another. We analyse Nuclear Spectroscopic Telescope Array X-ray observations of a small active region microflare (A0.02 GOES/XRS class equivalent) that occurred on 2021 November 17, with a new python package for spectral fitting, sunkit-spex, to compute the parameter posterior distributions and the evidence of different models representing the higher energy emission as due to thermal or non-thermal sources. Calculating the Bayes factor, we show that there is significantly stronger evidence for the higher energy microflare emission to be produced by non-thermal emission from flare-accelerated electrons than by an additional hot thermal source. Qualitative confirmation of this non-thermal source is provided by the lack of hotter (10 MK) emission in Solar Dynamic Observatory’s Atmospheric Imaging Assembly’s extreme ultraviolet data. The nested sampling approach used in this paper has provided clear support for non-thermal emission at the level of 3 × 1024 erg s−1 in this tiny microflare. 
    more » « less
  3. Abstract We identify a set of ∼100 “cold” solar flares and perform a statistical analysis of them in the microwave range. Cold flares are characterized by a weak thermal response relative to nonthermal emission. This work is a follow-up of a previous statistical study of cold flares, which focused on hard X-ray emission to quantify the flare nonthermal component. Here, we focus on the microwave emission. The thermal response is evaluated by the soft X-ray emission measured by the GOES X-ray sensors. We obtain spectral parameters of the flare gyrosynchrotron emission and reveal patterns of their temporal evolution. The main results of the previous statistical study are confirmed: as compared to a “mean” flare, the cold flares have shorter durations, higher spectral peak frequencies, and harder spectral indices above the spectral peak. Nonetheless, there are some cold flares with moderate and low peak frequencies. In the majority of cold flares, we find evidence of the Razin effect in the microwave spectra, indicative of rather dense flaring loops. We discuss the results in the context of the electron acceleration efficiency. 
    more » « less
  4. null (Ed.)
    Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p -modes, are suggestive of coupling between the photosphere and the corona. Aims. Our study investigates whether there are correlations in the periodic behavior of Type III radio bursts which are indicative of nonthermal electron acceleration processes, and coronal extreme ultraviolet (EUV) emission used to assess heating and cooling in an active region when there are no large flares. Methods. We used coordinated observations of Type III radio bursts from the FIELDS instrument on Parker Solar Probe (PSP), of EUV emissions by the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and white light observations by SDO Helioseismic and Magnetic Image (HMI), and of solar flare X-rays by Nuclear Spectroscopic Telescope Array (NuSTAR) on April 12, 2019. Several methods for assessing periodicities are utilized and compared to validate periods obtained. Results. Periodicities of ~5 min in the EUV in several areas of an active region are well correlated with the repetition rate of the Type III radio bursts observed on both PSP and Wind. Detrended 211 and 171 Å light curves show periodic profiles in multiple locations, with 171 Å peaks sometimes lagging those seen in 211 Å. This is suggestive of impulsive events that result in heating and then cooling in the lower corona. NuSTAR X-rays provide evidence for at least one microflare during the interval of Type III bursts, but there is not a one-to-one correspondence between the X-rays and the Type III bursts. Our study provides evidence for periodic acceleration of nonthermal electrons (required to generate Type III radio bursts) when there were no observable flares either in the X-ray data or the EUV. The acceleration process, therefore, must be associated with small impulsive events, perhaps nanoflares. 
    more » « less
  5. ABSTRACT We investigate the spatial, temporal, and spectral properties of 10 microflares from AR12721 on 2018 September 9 and 10 observed in X-rays using the Nuclear Spectroscopic Telescope ARray and the Solar Dynamic Observatory’s Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager. We find GOES sub-A class equivalent microflare energies of 1026–1028 erg reaching temperatures up to 10 MK with consistent quiescent or hot active region (AR) core plasma temperatures of 3–4 MK. One microflare (SOL2018-09-09T10:33), with an equivalent GOES class of A0.1, has non-thermal hard X-ray emission during its impulsive phase (of non-thermal power ∼7 × 1024 erg s−1) making it one of the faintest X-ray microflares to have direct evidence for accelerated electrons. In 4 of the 10 microflares, we find that the X-ray time profile matches fainter and more transient sources in the extreme-ultraviolet, highlighting the need for observations sensitive to only the hottest material that reaches temperatures higher than those of the AR core (>5 MK). Evidence for corresponding photospheric magnetic flux cancellation/emergence present at the footpoints of eight microflares is also observed. 
    more » « less