We consider the problem of automatically proving resource bounds. That is, we study how to prove that an integer-valued resource variable is bounded by a given program expression. Automatic resource-bound analysis has recently received significant attention because of a number of important applications (e.g., detecting performance bugs, preventing algorithmic-complexity attacks, identifying side-channel vulnerabilities), where the focus has often been on developing precise amortized reasoning techniques to infer the most exact resource usage. While such innovations remain critical, we observe that fully precise amortization is not always necessary to prove a bound of interest. And in fact, by amortizing selectively, the needed supporting invariants can be simpler, making the invariant inference task more feasible and predictable. We present a framework for selectively-amortized analysis that mixes worst-case and amortized reasoning via a property decomposition and a program transformation. We show that proving bounds in any such decomposition yields a sound resource bound in the original program, and we give an algorithm for selecting a reasonable decomposition.
more »
« less
This content will become publicly available on August 15, 2025
Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs
Probabilistic programs often trade accuracy for efficiency, and thus may, with a small probability, return an incorrect result. It is important to obtain precise bounds for the probability of these errors, but existing verification approaches have limitations that lead to error probability bounds that are excessively coarse, or only apply to first-order programs. In this paper we present Eris, a higher-order separation logic for proving error probability bounds for probabilistic programs written in an expressive higher-order language. Our key novelty is the introduction of error credits, a separation logic resource that tracks an upper bound on the probability that a program returns an erroneous result. By representing error bounds as a resource, we recover the benefits of separation logic, including compositionality, modularity, and dependency between errors and program terms, allowing for more precise specifications. Moreover, we enable novel reasoning principles such as expectation-preserving error composition, amortized error reasoning, and error induction. We illustrate the advantages of our approach by proving amortized error bounds on a range of examples, including collision probabilities in hash functions, which allow us to write more modular specifications for data structures that use them as clients. We also use our logic to prove correctness and almost-sure termination of rejection sampling algorithms. All of our results have been mechanized in the Coq proof assistant using the Iris separation logic framework and the Coquelicot real analysis library.
more »
« less
- Award ID(s):
- 2225441
- PAR ID:
- 10534006
- Publisher / Repository:
- Association for Computing Machinery
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 8
- Issue:
- ICFP
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 284 to 316
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Almost-sure termination is an important correctness property for probabilistic programs, and a number of program logics have been developed for establishing it. However, these logics have mostly been developed for first-order programs written in languages with specific syntactic patterns for looping. In this paper, we consider almost-sure termination for higher-order probabilistic programs with general references. This combination of features allows for recursion and looping to be encoded through a variety of patterns. Therefore, rather than developing proof rules for reasoning about particular recursion patterns, we instead propose an approach based on proving refinement between a higher-order program and a simpler probabilistic model, in such a way that the refinement preserves termination behavior. By proving a refinement, almost-sure termination behavior of the program can then be established by analyzing the simpler model. We present this approach in the form of Caliper, a higher-order separation logic for proving termination-preserving refinements. Caliper uses probabilistic couplings to carry out relational reasoning between a program and a model. To handle the range of recursion patterns found in higher-order programs, Caliper uses guarded recursion, in particular the principle of Löb induction. A technical novelty is that Caliper does not require the use of transfinite step indexing or other technical restrictions found in prior work on guarded recursion for termination-preservation refinement. We demonstrate the flexibility of this approach by proving almost-sure termination of several examples, including first-order loop constructs, a random list generator, treaps, and a sampler for Galton-Watson trees that uses higher-order store. All the results have been mechanized in the Coq proof assistant.more » « less
-
null (Ed.)Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.more » « less
-
Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.more » « less
-
We present Lilac, a separation logic for reasoning about probabilistic programs where separating conjunction captures probabilistic independence. Inspired by an analogy with mutable state where sampling corresponds to dynamic allocation, we show how probability spaces over a fixed, ambient sample space appear to be the natural analogue of heap fragments, and present a new combining operation on them such that probability spaces behave like heaps and measurability of random variables behaves like ownership. This combining operation forms the basis for our model of separation, and produces a logic with many pleasant properties. In particular, Lilac has a frame rule identical to the ordinary one, and naturally accommodates advanced features like continuous random variables and reasoning about quantitative properties of programs. Then we propose a new modality based on disintegration theory for reasoning about conditional probability. We show how the resulting modal logic validates examples from prior work, and give a formal verification of an intricate weighted sampling algorithm whose correctness depends crucially on conditional independence structure.more » « less