Abstract Non‐native plant pests and pathogens threaten biodiversity, ecosystem function, food security, and economic livelihoods. As new invasive populations establish, often as an unintended consequence of international trade, they can become additional sources of introductions, accelerating global spread through bridgehead effects. While the study of non‐native pest spread has used computational models to provide insights into drivers and dynamics of biological invasions and inform management, efforts have focused on local or regional scales and are challenged by complex transmission networks arising from bridgehead population establishment. This paper presents a flexible spatiotemporal stochastic network model called PoPS (Pest or Pathogen Spread) Global that couples international trade networks with core drivers of biological invasions—climate suitability, host availability, and propagule pressure—quantified through open, globally available databases to forecast the spread of non‐native plant pests. The modular design of the framework makes it adaptable for various pests capable of dispersing via human‐mediated pathways, supports proactive responses to emerging pests when limited data are available, and enables forecasts at different spatial and temporal resolutions. We demonstrate the framework using a case study of the invasive planthopper spotted lanternfly (Lycorma delicatula). The model was calibrated with historical, known spotted lanternfly introductions to identify potential bridgehead populations that may contribute to global spread. This global view of phytosanitary pandemics provides crucial information for anticipating biological invasions, quantifying transport pathways risk levels, and allocating resources to safeguard plant health, agriculture, and natural resources. 
                        more » 
                        « less   
                    
                            
                            Cities Shape the Diversity and Spread of Nonnative Species
                        
                    
    
            The globalization of trade and increased human mobility have facilitated the introduction and spread of nonnative species, posing significant threats to biodiversity and human well-being. As centers of global trade and human populations, cities are foci for the introduction, establishment, and spread of nonnative species. We present a global synthesis of urban characteristics that drive biological invasions within and across cities, focusing on four axes: (a) connectivity, (b) physical properties, (c) culture and socioeconomics, and (d) biogeography and climate. Urban characteristics such as increased connectivity within and among cities, city size and age, and wealth emerged as important drivers of nonnative species diversity and spread, while the relative importance of biogeographic and climate drivers varied considerably. Elaborating how these characteristics shape biological invasions in cities is crucial for designing and implementing strategies to mitigate the impacts of invasions on ecological systems and human well-being. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2213567
- PAR ID:
- 10534032
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Ecology, Evolution, and Systematics
- ISSN:
- 1543-592X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Biological invasions are inextricably linked to how people collect, move, interact with and perceive non-native species. However, invasion frameworks generally do not consider reciprocal interactions between non-native species and people. Non-native species can shape human actions via beneficial or detrimental ecological and socioeconomic effects and people, in turn, shape invasions through their movements, behaviour and how they respond to the collection, transport, introduction and spread of non-natives. The feedbacks that stem from this ‘coupled human and natural system’ (CHANS) could therefore play a key role in mitigating (i.e. negative feedback loops) or exacerbating (i.e. positive feedback loops) ongoing and future invasions. We posit that the invasion process could be subdivided into three CHANS that span from the source region from which non-natives originate to the recipient region in which they establish and spread. We also provide specific examples of feedback loops that occur within each CHANS that have either reduced or facilitated new introductions and spread of established non-native species. In so doing, we add to exisiting invasion frameworks to generate new hypotheses about human-based drivers of biological invasions and further efforts to determine how ecological outcomes feed back into human actions.more » « less
- 
            Abstract Urban areas are foci for the introduction of non‐native plant species, and they often act as launching sites for invasions into the wider environment. Although interest in biological invasions in urban areas is growing rapidly, and the extent and complexity of problems associated with invasions in these systems have increased, data on the composition and numbers of non‐native plants in urbanized areas remain scattered and idiosyncratic.We assembled data from multiple sources to create the Global Urban Biological Invasions Compendium (GUBIC) for vascular plants representing 553 urban centres from 61 countries across every continent except Antarctica.The GUBIC repository includes 8140 non‐native plant species from 253 families. The number of urban centres in which these non‐native species occurred had a log‐normal distribution, with 65.2% of non‐native species occurring in fewer than 10 urban centres.Practical implications: The dataset has wider applications for urban ecology, invasion biology, macroecology, conservation, urban planning and sustainability. We hope this dataset will stimulate future research in invasion ecology related to the diversity and distributional patterns of non‐native flora across urban centres worldwide. Further, this information should aid the early detection and risk assessment of potential invasive species, inform policy development and assist in setting management priorities.more » « less
- 
            Urban forests provide ecosystem services important for regulating climate, conserving biodiversity, and maintaining human well‐being. However, these forests vary in composition and physiological traits due to their unique biophysical and social contexts. This variation complicates assessing the functions and services of different urban forests. To compare the characteristics of the urban forest, we sampled the species composition and two externally sourced traits (drought tolerance and water‐use capacity) of tree and shrub species in residential yards, unmanaged areas, and natural reference ecosystems within six cities across the contiguous US. As compared to natural and unmanaged forests, residential yards had markedly higher tree and shrub species richness, were composed primarily of introduced species, and had more species with low drought tolerance. The divergence between natural and human‐managed areas was most dramatic in arid climates. Our findings suggest that the answer to the question of “what is an urban forest” strongly depends on where you look within and between cities.more » « less
- 
            JIA, Zhi-Yun (Ed.)Abstract Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species, but patterns and drivers of alien species assemblages remain poorly understood relative to native species. Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity. However, it remains unclear which climatic factors drive the assemblage of alien species. Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a resolution of 2° × 2°) and administrative scale (271 native and 297 current nations and sub-nations) on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions. This pattern was driven by extremely high temperatures and precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can account for the alien assemblage after invasions. Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    