skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 9, 2025

Title: Toward liquid cell quantum sensing: Ytterbium complexes with ultranarrow absorption

The energetic disorder induced by fluctuating liquid environments acts in opposition to the precise control required for coherence-based sensing. Overcoming fluctuations requires a protected quantum subspace that only weakly interacts with the local environment. We report a ytterbium complex that exhibited an ultranarrow absorption linewidth in solution at room temperature with a full width at half maximum of 0.625 milli–electron volts. Using spectral hole burning, we measured an even narrower linewidth of 410 pico–electron volts at 77 kelvin. Narrow linewidths allowed low-field magnetic circular dichroism at room temperature, used to sense Earth-scale magnetic fields. These results demonstrated that ligand protection in lanthanide complexes could substantially diminish electronic state fluctuations. We have termed this system an “atomlike molecular sensor” (ALMS) and proposed approaches to improve its performance.

 
more » « less
Award ID(s):
2221453
NSF-PAR ID:
10534050
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
385
Issue:
6709
ISSN:
0036-8075
Page Range / eLocation ID:
651 to 656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched10B or11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.

     
    more » « less
  2. Two-dimensional van der Waals (vdWs) materials have gathered a lot of attention recently. However, the majority of these materials have Curie temperatures that are well below room temperature, making it challenging to incorporate them into device applications. In this work, we synthesized a room-temperature vdW magnetic crystal Fe5GeTe2 with a Curie temperature T$_c = 332$ K, and studied its magnetic properties by vibrating sample magnetometry (VSM) and broadband ferromagnetic resonance (FMR) spectroscopy. The experiments were performed with external magnetic fields applied along the c-axis (H$\parallel$c) and the ab-plane (H$\parallel$ab), with temperatures ranging from 300 to 10 K. We have found a sizable Landé g-factor difference between the H$\parallel$c and H$\parallel$ab cases. In both cases, the Landé g-factor values deviated from g = 2. This indicates contribution of orbital angular momentum to the magnetic moment. The FMR measurements reveal that Fe5GeTe2 has a damping constant comparable to Permalloy. With reducing temperature, the linewidth was broadened. Together with the VSM data, our measurements indicate that Fe5GeTe2 transitions from ferromagnetic to ferrimagnetic at lower temperatures. Our experiments highlight key information regarding the magnetic state and spin scattering processes in Fe5GeTe2, which promote the understanding of magnetism in Fe5GeTe2, leading to implementations of Fe5GeTe2 based room-temperature spintronic devices. 
    more » « less
  3. Abstract

    Organic‐based magnetic materials have been used for spintronic device applications as electrodes of spin aligned carriers and spin‐pumping substrates. Their advantages over more traditional inorganic magnets include reduced magnetic damping and lower fabrication costs. Vanadium tetracyanoethylene, V[TCNE]x(x ≈ 2), is an organic‐based ferrimagnet with an above room‐temperature magnetic order temperature (Tc ≈ 400 K). V[TCNE]xhas deposition flexibility and can be grown on a variety of substrates via low‐temperature chemical vapor deposition (CVD). A systematic study of V[TCNE]xthin‐film CVD parameters to achieve optimal film quality, reproducibility, and excellent magnetic properties is reported. This is assessed by broadband ferromagnetic resonance (FMR) that shows most narrow linewidth of ≈1.5 Gauss and an extremely low Gilbert damping coefficient. The neat V[TCNE]xfilms are shown to be efficient spin injectors via spin pumping into an adjacent platinum layer. Also, under an optimized FMR linewidth, the V[TCNE]xfilms exhibit Fano‐type resonance with a continuum broadband absorption in the microwave range, which can be readily tuned by the microwave frequency.

     
    more » « less
  4. Abstract We present Raman-scattering results for three materials, CeB 6 , TbInO 3 , and YbRu 2 Ge 2 , to illustrate the essential aspects of crystal-field (CF) excitations and quadrupolar fluctuations of 4 f -electron systems. For CF excitations, we illustrate how the 4 f orbits are split by spin-orbit coupling and CF potential by presenting spectra for inter- and intra-multiplet excitations over a large energy range. We discuss identification of the CF ground state and establishment of low-energy CF level scheme from the symmetry and energy of measured CF excitations. In addition, we demonstrate that the CF linewidth is a sensitive probe of electron correlation by virtue of self-energy effect. For quadrupolar fluctuations, we discuss both ferroquadrupolar (FQ) and antiferroquadrupolar (AFQ) cases. Long-wavelength quadrupolar fluctuations of the same symmetry as the FQ order parameter persists well above the transition temperature, from which the strength of electronic intersite quadrupolar interaction can be evaluated. The tendency towards AFQ ordering induces ferromagnetic correlation between neighboring 4 f -ion sites, leading to long-wavelength magnetic fluctuations. 
    more » « less
  5. Abstract

    The ability to redirect electron transport to new reactions in living systems opens possibilities to store energy, generate new products, or probe physiological processes. Recent work by Huang et al. showed that 3D crystals of small tetraheme cytochromes (STC) can transport electrons over nanoscopic to mesoscopic distances by an electron hopping mechanism, making them promising materials for nanowires. However, fluctuations at room temperature may distort the nanostructure, hindering efficient electron transport. Classical molecular dynamics simulations of these fluctuations at the nano‐ and mesoscopic scales allowed us to develop a graph network representation to estimate maximum electron flow that can be driven through STC wires. In longer nanowires, transient structural fluctuations at protein‐protein interfaces tended to obstruct efficient electron transfer, but these blockages are ameliorated in thicker crystals where alternative electron transfer pathways become more efficient. The model implies that more flexible proteinprotein interfaces limit the required minimum diameter to carry currents commensurate with conventional electronics.

     
    more » « less