skip to main content


Search for: All records

Award ID contains: 2016245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Existing experimental demonstrations of quantum computational advantage have had the limitation that verifying the correctness of the quantum device requires exponentially costly classical computations. Here we propose and analyse an interactive protocol for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies on a class of cryptographic tools called trapdoor claw-free functions. Although this type of function has been applied to quantum advantage protocols before, our protocol employs a surprising connection to Bell’s inequality to avoid the need for a demanding cryptographic property called the adaptive hardcore bit, while maintaining essentially no increase in the quantum circuit complexity and no extra assumptions. Leveraging the relaxed cryptographic requirements of the protocol, we present two trapdoor claw-free function constructions, based on Rabin’s function and the Diffie–Hellman problem, which have not been used in this context before. We also present two independent innovations that improve the efficiency of our implementation and can be applied to other quantum cryptographic protocols. First, we give a scheme to discard so-called garbage bits, removing the need for reversibility in the quantum circuits. Second, we show a natural way of performing postselection that reduces the fidelity needed to demonstrate quantum advantage. Combining these results, we describe a blueprint for implementing our protocol on Rydberg atom-based quantum devices, using hardware-native operations that have already been demonstrated experimentally.

     
    more » « less
  2. Free, publicly-accessible full text available April 27, 2024
  3. A bstract According to the AdS/CFT correspondence , the geometries of certain spacetimes are fully determined by quantum states that live on their boundaries — indeed, by the von Neumann entropies of portions of those boundary states. This work investigates to what extent the geometries can be reconstructed from the entropies in polynomial time . Bouland, Fefferman, and Vazirani (2019) argued that the AdS/CFT map can be exponentially complex if one wants to reconstruct regions such as the interiors of black holes. Our main result provides a sort of converse: we show that, in the special case of a single 1D boundary divided into N “atomic regions”, if the input data consists of a list of entropies of contiguous boundary regions, and if the entropies satisfy a single inequality called Strong Subadditivity, then we can construct a graph model for the bulk in linear time. Moreover, the bulk graph is planar, it has O ( N 2 ) vertices (the information-theoretic minimum), and it’s “universal”, with only the edge weights depending on the specific entropies in question. From a combinatorial perspective, our problem boils down to an “inverse” of the famous min-cut problem: rather than being given a graph and asked to find a min-cut, here we’re given the values of min-cuts separating various sets of vertices, and need to find a weighted undirected graph consistent with those values. Our solution to this problem relies on the notion of a “bulkless” graph, which might be of independent interest for AdS/CFT. We also make initial progress on the case of multiple 1D boundaries — where the boundaries could be connected via wormholes — including an upper bound of O ( N 4 ) vertices whenever an embeddable bulk graph exists (thus putting the problem into the complexity class NP). 
    more » « less
  4. Abstract Existing space-based cold atom experiments have demonstrated the utility of microgravity for improvements in observation times and for minimizing the expansion energy and rate of a freely evolving coherent matter wave. In this paper we explore the potential for space-based experiments to extend the limits of ultracold atoms utilizing not just microgravity, but also other aspects of the space environment such as exceptionally good vacuums and extremely cold temperatures. The tantalizing possibility that such experiments may one day be able to probe physics of quantum objects with masses approaching the Planck mass is discussed. 
    more » « less