skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 6, 2025

Title: Shrub encroachment of coastal ecosystems depends on dune elevation
Woody plant encroachment is infuenced by interactions between the physical environment and vegetation, which create heterogenous microenvironments some of which favor shrub recruitment through mitigation of the abiotic environment. Encroachment of native shrub, Morella cerifera into grasslands on Hog Island, Virginia has been attributed to warmer winter temperature; however, recruitment of seedlings in grasslands may be impacted by multiple factors at the level of the microhabitat. Our study focuses on a critical gap in understanding factors specifcally infuencing M. cerifera seedling recruitment and survival. By experimentally planting M. cerifera seedlings at varying dune elevations and grass densities, we tested hypotheses that dune elevation infuences the microclimate, soil characteristics and vegetation cover and that grass cover/density is related to shrub establishment. We tested these hypotheses through gathering data from temperature data loggers, conducting soil water content and chloride analyses, and determining percent cover of grasses relative to dune elevation. Results indicate that dune elevation was positively related to moderated temperatures with reduced temperature extremes and vegetation cover/composition that led to favorable locations for M. cerifera establishment and growth. Where dune elevation is>2 m, we document an upper limit of grass cover on natural seedling establishment, suggesting a switch from facilitative to competitive efects with grass density. Overall, our work demonstrates interactions between dune elevation and medium grass density has a facilitative infuence on M. cerifera establishment and can be used for future predictions of shrub growth with rising sea-levels.  more » « less
Award ID(s):
1832221
PAR ID:
10534139
Author(s) / Creator(s):
;
Publisher / Repository:
Plant Ecology, Springer
Date Published:
Journal Name:
Plant Ecology
ISSN:
1385-0237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The encroachment of woody plants into grasslands is a global phenomenon with implications for biodiversity and ecosystem function. Understanding and predicting the pace of expansion and the underlying processes that control it are key challenges in the study and management of woody encroachment. Theory from spatial population biology predicts that the occurrence and speed of expansion should depend sensitively on the nature of conspecific density dependence. If fitness is maximized at the low‐density encroachment edge, then shrub expansion should be “pulled” forward. However, encroaching shrubs have been shown to exhibit positive feedbacks, whereby shrub establishment modifies the environment in ways that facilitate further shrub recruitment and survival. In this case there may be a fitness cost to shrubs at low density causing expansion to be “pushed” from behind the leading edge. We studied the spatial dynamics of creosotebush (Larrea tridentata), which has a history of encroachment into Chihuahuan Desert grasslands over the past century. We used demographic data from observational censuses and seedling transplant experiments to test the strength and direction of density dependence in shrub fitness along a gradient of shrub density at the grass–shrub ecotone. We also used seed‐drop experiments and wind data to construct a mechanistic seed‐dispersal kernel, then connected demography and dispersal data within a spatial integral projection model (SIPM) to predict the dynamics of shrub expansion. Contrary to expectations based on potential for positive feedbacks, the shrub encroachment wave is “pulled” by maximum fitness at the low‐density front. However, the predicted pace of expansion was strikingly slow (ca. 8 cm/year), and this prediction was supported by independent resurveys of the ecotone showing little to no change in the spatial extent of shrub cover over 12 years. Encroachment speed was acutely sensitive to seedling recruitment, suggesting that this population may be primed for pulses of expansion under conditions that are favorable for recruitment. Our integration of observations, experiments, and modeling reveals not only that this ecotone is effectively stalled under current conditions but also why that is so and how that may change as the environment changes. 
    more » « less
  2. {"Abstract":["The encroachment of woody plants into grasslands is a global\n phenomenon with implications for biodiversity and ecosystem\n function. Understanding and predicting the pace of expansion and the\n underlying processes that control it are key challenges in the study\n and management of woody encroachment. Theory from spatial population\n biology predicts that the occurrence and speed of population\n expansion should depend sensitively on the nature of conspecific\n density dependence. If fitness is maximized at the low-density\n encroachment edge then shrub expansion should be "pulled"\n forward. However, encroaching shrubs have been shown to exhibit\n positive feedbacks, whereby shrub establishment modifies the\n environment in ways that facilitate further shrub recruitment and\n survival. In this case there may be a fitness cost to shrubs at low\n density causing expansion to be "pushed" from behind the\n leading edge. We studied the spatial dynamics of creosotebush\n (Larrea tridentata), which has a history of\n encroachment into Chihuahuan Desert grasslands over the past\n century. We used demographic data from observational censuses and\n seedling transplant experiments to test the strength and direction\n of density dependence in shrub fitness along a gradient of shrub\n density at the grass-shrub ecotone. We also used seed-drop\n experiments and wind data to construct a mechanistic seed dispersal\n kernel, then connected demography and dispersal data within a\n spatial integral projection model (SIPM) to predict the dynamics of\n shrub expansion. The SIPM predicted that, contrary to expectations\n based on potential for positive feedbacks, the shrub encroachment\n wave is "pulled" by maximum fitness at the low-density\n front. However, the predicted pace of expansion was strikingly slow\n (ca. 8 cm/yr), and this prediction was supported by independent\n re-surveys of the ecotone showing little to no change in spatial\n extent of shrub cover over 12 years. Encroachment speed was acutely\n sensitive to seedling recruitment, suggesting that this population\n may be primed for pulses of expansion under conditions that are\n favorable for recruitment. Our integration of observations,\n experiments, and modeling reveals not only that this ecotone is\n effectively stalled under current conditions, but also\n why that is so and how that may change as the\n environment changes."]} 
    more » « less
  3. Abstract AimsGrassland-to-shrubland transition is a common form of land degradation in drylands worldwide. It is often attributed to changes in disturbance regimes, particularly overgrazing. A myriad of direct and indirect effects (e.g., accelerated soil erosion) of grazing may favor shrubs over grasses, but their relative importance is unclear. We tested the hypothesis that topsoil “winnowing” by wind erosion would differentially affect grass and shrub seedling establishment to promote shrub recruitment over that of grass. MethodsWe monitored germination and seedling growth of contrasting perennial grass (Bouteloua eriopoda,Sporobolus airoides, andAristida purpurea) and shrub (Prosopis glandulosa,Atriplex canescens, andLarrea tridentata) functional groups on field-collected non-winnowed and winnowed soils under well-watered greenhouse conditions. ResultsNon-winnowed soils were finer-textured and had higher nutrient contents than winnowed soils, but based on desorption curves, winnowed soils had more plant-available moisture. Contrary to expectations, seed germination and seedling growth on winnowed and non-winnowed soils were comparable within a given species. The N2-fixing deciduous shrubP. glandulosawas first to emerge and complete germination, and had the greatest biomass accumulation of all species. ConclusionsGermination and early seedling growth of grasses and shrubs on winnowed soils were not adversely nor differentially affected comparing with that observed on non-winnowed soils under well-watered greenhouse conditions. Early germination and rapid growth may giveP. glandulosaa competitive advantage over grasses and other shrub species at the establishment stage in grazed grasslands. Field establishment experiments are needed to confirm our findings in these controlled environment trials. 
    more » « less
  4. Dryland environments are experiencing shifting ecogeomorphic patterns due to climatic changes and anthropogenic activities, resulting in a shift from grasslands to shrub-dominated landscapes. This dissertation investigates the effects from increasingly variable monsoonal precipitation and ecogeomorphic connectivity on perennial grass growth, litter distribution, and soil organic matter in drylands, with a focus on grass-shrub ecotones. Field experiments were conducted in the Chihuahuan Desert at the Jornada Basin Long-Term Ecological Research (LTER) site using a precipitation manipulation system and connectivity modifiers (ConMods) to assess their effects on plant productivity, recruitment, and soil nutrient distribution. Results show that reducing connectivity, combined with increased monsoonal precipitation, can enhance perennial grass productivity and recruitment, and affect the distribution of soil organic matter and non-photosynthetic vegetation. These findings contribute to our understanding of how aeolian processes and shifting precipitation regimes will shape vegetation patterns and soil properties in dryland environments under future climate scenarios. This research provides insights into potential mitigation strategies for combating shrub encroachment and promoting the sustainability of dryland ecosystems. 
    more » « less
  5. Abstract The persistence of future forests depends on the success of tree seedlings which are experiencing increasing physiological stress from changing climate and air pollution. Although the moss layer can serve as an important substrate for tree seedlings, its potential for reducing environmental stress and enhancing the establishment of seedlings remains poorly understood. We tested if the moss layer decreased environmental stress and increased the abundance of balsam fir seedlings dominant in high-elevation forests of northeastern United States that are sensitive to changing climate and mercury deposition. We surveyed balsam fir seedling density by substrate (moss, litter, other) on 120 quadrats (1 × 1 m) in two contrasting canopy environments (in gaps and under canopies), measured seedling stress, and quantified mercury content in seedlings and substrates. We observed that, in both canopy environments, tree seedlings established on moss exhibited (i) increased density, (ii) decreased physiological stress, and (iii) higher potential to recruit into larger size classes, compared to seedlings established in litter. Regardless of canopy environment, seedling foliar mercury levels did not correspond to substrate mercury despite large differences in substrate mercury concentrations (relative to moss, litter concentrations were ~ 4-times greater and soil concentrations were ~ 6-times greater), likely reflecting the dominance of foliar over root uptake of mercury. Because the moss layer appeared to mitigate seedling drought stress, and to increase seedling establishment and recruitment compared to other substrates, these microsite effects should be considered in models predicting forest regeneration and dynamics under increased drought stress associated with the ongoing climate warming. 
    more » « less